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Abstract
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1. Introduction

Our aim in this review is to describe some links which are starting to emerge between two
previously separated areas of mathematical physics—the theory of integrable models in two
dimensions, and the spectral analysis of ordinary differential equations.

The study of integrable lattice models has been an intriguing part of mathematical physics
since Onsager’s solution of the two-dimensional Ising model. Lieb and Sutherland’s work on
the six-vertex model showed that this was not an isolated phenomenon, and with Baxter’s work
at the beginning of the 1970s the full richness of the field began to be appreciated by a wider
community. Since that time interest in the subject has grown steadily, receiving a particular
boost of late from the links which exist with integrable quantum field theories. Many different
methods exist for the solution of these models, and a technique which will be very important
in the following goes by the name of the ‘functional relations’ approach. The idea, initially
put forward by Baxter, is to show that quantities of interest satisfy functional relations. When
combined with suitable analyticity properties, these relations can be highly restrictive and
often lead to exact formulae for quantities of physical interest.
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In a parallel chain of development which also dates back at least to the early 1970s, Sibuya,
Voros and others have shown that functional relations have an important rôle to play in a rather
more classical area of mathematics, namely the theory of Stokes multipliers and spectral
determinants for ordinary differential equations in the complex domain. However, it is only
recently that the existence of a precise link—an ‘ODE/IM correspondence’—between these
two areas has been realized. The aim of these notes is to provide an elementary introduction
to this connection and its background. For most of the time the focus will be on the simplest
example, which connects second-order ordinary differential equations to integrable models
associated with the Lie algebra SU(2).

We begin, in the following section, with a short introduction to the types of spectral
problems which will be relevant, mentioning in the process our third main theme, the intriguing
reality properties of certain non-Hermitian spectral problems which arise in the study of ‘PT -
symmetric’ quantum mechanics. Integrable lattice models and their treatment via functional
relations are introduced in section 3; we also discuss briefly the recent development of these
ideas within quantum field theory. The differential equations side of the story is explained
in section 4, after which the link with integrable models is made precise in section 5. Some
applications and generalizations of the correspondence are outlined in section 6, and section 7
contains our conclusions. Various pieces of background material have been collected in the
appendices, including an explanation of the algebraic Bethe ansatz in appendix A.

More on the ODE/IM correspondence can be found in [1–19]. All of this work rests on
earlier studies by, among others, Sibuya [20], Voros [21], and Bender et al [22–24] (on the
ODE side) and by Baxter [25, 26], Klümper, Pearce and collaborators [27, 28], Fendley et al
[29], and Bazhanov, Lukyanov and Zamolodchikov [30–32] on the integrable models side.

We have aimed to make this review accessible to readers with backgrounds in both
the integrable models and the differential equations communities; for this reason, we have
tried to keep the treatment relatively elementary. More details can be found in many places
[20, 21, 33, 34].

Those readers primarily interested in ODEs may prefer to concentrate on section 2, briefly
read sections 3.2, 3.9 and 3.10 to get a flavour of the integrable model picture, then move on
to sections 4, 5 and 6, while those primarily interested in integrable models may like to look
initially at sections 2, 3, 4 and then at 5.1, 5.2 and 5.6.

2. Prelude: three reality conjectures in PT -symmetric quantum mechanics

Spectral problems, some of a rather unconventional nature, will play a central rôle on the
‘differential equations’ side of our story. Rather than launch straight into technicalities, we
shall warm up in this preliminary section by describing an intriguing class of problems much
studied by Bender and collaborators and others in recent years. It all begins4 with a question
posed by Bessis and Zinn-Justin, sometime near 1992.

Question 1. What does the spectrum of the Hamiltonian

H = p2 + ix3 (2.1)

look like?
This is a cubic oscillator, with purely imaginary coupling i. (Strictly speaking,

Bessis and Zinn-Justin, motivated by considerations of the Yang–Lee edge singularity
[42–44], were initially interested in more general Hamiltonians of the form p2 + x2 + igx3,

4 While this question initiated the line of work we want to describe here, similar curiosities had in fact been observed
before—see, for example, [35–39]. For further historical discussions, see [40, 41].
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ψ(x)

x

Figure 1. A wavefunction decaying at x = ±∞.

from which the above problem emerged as a strong-coupling limit.) The corresponding
Schrödinger equation is

− d2

dx2
ψ(x) + ix3ψ(x) = Eψ(x) (2.2)

and we shall declare that the (possibly complex) number E is in the spectrum if and only if,
for that value of E, the equation has a solution ψ(x) on the real axis which decays both at
x → −∞ and at x → +∞, as illustrated in figure 1.5 Note that the differential equation
forces the wavefunction ψ(x) to be complex, even for real values of x and E. And since the
Hamiltonian is not (at least in any obvious way) Hermitian, the usual arguments to show that
all of the eigenvalues must be real do not apply. Nevertheless, perturbative and numerical
studies led Bessis and Zinn-Justin to the following claim.

Conjecture 1 [47]. The spectrum of H is real, and positive.
What might be behind this strange property? Bender and Boettcher [23] stressed the

relevance of PT symmetry. To be more precise, ‘P’, or parity, acts by sending x to −x and
p to −p while T , time reversal, sends x to x, p to −p and i to −i. Note that both P and T
preserve the canonical commutation relation [x, p] = i of quantum mechanics even if x and
p are complex [24].

As shown in [24], PT invariance implies that eigenvalues are either real, or appear in
complex-conjugate pairs, much like the roots of a real polynomial. But, just as the typical
real polynomial has many complex roots6, on its own PT invariance of the Hamiltonian
does not guarantee reality. This is elegantly shown by the following generalization of the
Bessis–Zinn-Justin problem, proposed by Bender and Boettcher [23].

Question 2. What is the spectrum of

HM = p2 − (ix)2M (M real, >0)? (2.3)

Later, it will turn out that the passage from question 1 to question 2 corresponds to a
change in a parameter in a lattice model, or equivalently to a change of a quantum group
deformation parameter in a Bethe ansatz system. But for now, the generalization is appealing
because it unites into a single family of eigenvalue problems both the M = 3/2 case, for which
we have the Bessis–Zinn-Justin conjecture, and the much more easily understood M = 1 case,
the simple harmonic oscillator. Furthermore, for all M the problem is PT -symmetric. The
Schrödinger equation is now

− d2

dx2
ψ(x) − (ix)2Mψ(x) = Eψ(x) (2.4)

5 To be more precise, the decay should be fast enough that ψ(x) lies in L2(R), the space of square-integrable
functions on the real axis. This means that we are actually discussing the so-called point spectrum of H—see, for
example, [45, 46].
6 A famous result of Kac shows that the expected fraction of real zeros of a real polynomial of degree n with random
(normally distributed) coefficients tends to zero as n → ∞, as 2

π
log(n)/n. See [48, 49], and, for example, [50, 51].
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Figure 2. HM = p2 − (ix)2M : real eigenvalues as a function of M.

and again we ask for those values of E at which there is a solution along the real x-axis which
decays at both plus and minus infinity. Two details need extra care: for non-integer values of
2M , the ‘potential’ −(ix)2M is not single valued, and when M hits 2, the naive definition of the
eigenvalue problem runs into difficulties. The first problem is easily cured by adding a branch
cut running up the positive imaginary x-axis. The second is more subtle, and its resolution
more interesting; it will be discussed in greater detail in section 4 below.

For the moment, we shall agree to keep M below 2. Even so, there is an interesting
surprise. Figure 2 is taken from [4]—it reproduces the results of [23]. Clearly, something
strange occurs as M decreases below 1. Infinitely many real eigenvalues pair off and become
complex, and only finitely many remain real. By the time M has reached 0.75, all but three
have become complex, and as M tends to 0.5 the last real eigenvalue diverges to infinity. In
fact, at M = 0.5 the problem has no eigenvalues at all, as can be seen by shifting ix to ix − E

and solving the resulting equation using an Airy function. For M � 1, numerical results
combined with various pieces of analytical evidence indicated that the spectrum was entirely
real, and positive, and so Bender and Boettcher generalized conjecture 1 to the following.

Conjecture 2 [23]. The spectrum of HM is real and positive for M � 1.
The ‘phase transition’ to infinitely many complex eigenvalues at M = 1 can be interpreted

as a spontaneous breaking of PT symmetry [23].
One further generalization of the Bessis–Zinn-Justin conjecture will be relevant later.

Consider the following question.
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Figure 3. HM,l = p2 − (ix)2M + l(l + 1)x−2: real eigenvalues as a function of M for
l = −0.025, l(l + 1) = −0.024735.

Question 3. What is the spectrum of

HM,l = p2 − (ix)2M + l(l + 1)/x2 (M and l real, M > 0)? (2.5)

This amounts to studying the effect of an angular-momentum-like term l(l + 1)x−2 on the
Bender–Boettcher problem, and it was first investigated in [4]. Note that we continue to
impose boundary conditions at x = ±∞, in the way stated just after equation (2.2) above.
With the angular-momentum term included we need to specify how the wavefunction should
be continued around the singularity at x = 0; given the choice to place a branch cut on
the positive-imaginary x axis this continuation should be done through the lower half plane.
(There will be much more discussion of boundary conditions later, so we will not go into this
detail any more for now.) Again, a combination of numerical and analytical work gave strong
evidence for the following.

Conjecture 3 [4]. The spectrum of HM,l is real and positive for M � 1 and |2l + 1| < M + 1.
Although a small angular-momentum-like term does not have a significant effect while

M � 1 and the eigenvalues all remain real, for M < 1 it can make a remarkable difference to
the way in which they become complex. Figure 3 shows the spectral plot for l = −0.025, and
reveals a dramatic change from the earlier l = 0 plot: the connectivity of the real eigenvalues
has been reversed, so that while for l = 0 the first and second excited states pair off, for
l = −0.025 the first excited state is instead paired with the ground state, and so on up the
spectrum. With this in mind, it may be hard to see how it is possible to pass between the
sets of spectra depicted in figures 3 and 2 simply by varying the continuous parameter l from
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Figure 4. Real eigenvalues of p2 − (ix)2M + l(l + 1)/x2 as functions of M, for various values of l.

−0.025 to zero. The mechanism should become clear by looking at the sample of intermediate
pictures of figure 4.

A final generalization allows for an even richer phenomenology. Adding an
inhomogeneous term −α(ix)M−1 to the potential for HM,l gives a three-parameter family
of problems:

HM,α,l = p2 − (ix)2M − α(ix)M−1 + l(l + 1)/x2. (2.6)

Again, the first question to ask is whether the spectrum of HM,α,l is entirely real. Some general
results will be described later in this review, but for now we illustrate the situation by giving
some ‘experimental’ data for the case M = 3. Special features of this particular case make it
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Figure 4. (Continued).
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Figure 5. H3,α,l : region of unreality in the (α, ρ) plane, where ρ = √
3(2l + 1).

desirable to trade the parameter l for ρ := √
3(2l + 1); this being understood, figure 5 shows,

below the cusped line, the region of the (α, ρ) plane where all eigenvalues of H3,α,l are real.
One last comment is worth making here: the alert reader might protest that substituting M = 3
into (2.6) results in a Hamiltonian which is manifestly real, with a potential bounded from
below, which should surely have an entirely real spectrum for all values of α and l (or ρ). The
question is a fair one, but it fails to take into account the fact that we have implicitly imposed
boundary conditions which analytically continue those at M = 1. This continuation takes M
past the value 2 at which we already observed that there would be subtleties in defining the
spectrum. We shall return to this point later.

Bender and Boettcher’s observation [23] has sparked a great deal of interest in reality
properties in non-Hermitian quantum mechanics; a (small) sample of related work on the
reality issue is provided by [52–112]. In this already long review, we will not have space for
any further discussion of non-Hermitian quantum mechanics in general; more on current issues
in the field can be found in, for example, [41], the review [113], the conference proceedings
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[114], and references therein. Instead we just remark that reality properties in PT -symmetric
quantum mechanics of the sort described above have turned out to be surprisingly hard to
establish by conventional means. An interesting byproduct of the ODE/IM correspondence
has been a relatively elementary proof of conjectures 1, 2 and 3, and an understanding of
many features of figure 5. We shall give this proof in section 6.2 below; it relies heavily on
certain functional relations which had first made their appearance in a very different context:
the theory of integrable lattice models. A rapid introduction to the background to this material
is our next subject.

3. Integrable models and functional relations

In this section we shall introduce the integrable lattice models and quantum field theories that
will be relevant later. One particular technique for their solution, the ‘functional relations’
approach, will be highlighted. We start with the lattice models, and then discuss what is known
as the ‘continuum limit’ in preparation for the link with quantum-mechanical problems.

3.1. Generalities

Lattice models provide a way to understand the behaviours of magnets, and other substances,
which exhibit a number of distinct ‘phases’ depending on the values taken by external
parameters, such as the temperature. The simplest example is the Ising model, where a
macroscopic magnet is modelled by a square lattice of microscopic ‘atoms’, each of which
can exist in one of the two states of magnetization, up or down. By coupling nearest neighbour
atoms by an interaction which favours the lining-up of their magnetizations, a system is
produced which captures the tendency of real magnets to exhibit an overall, macroscopic,
magnetization at low temperatures, which is then lost as the temperature is increased past
some critical value. At this point, the model is said to undergo a ‘phase transition’, from
an ‘ordered’ to a ‘disordered’ phase. The qualitative features of this behaviour can often
be deduced from general arguments—the Peierls argument [115] is a good example—but
for certain two-dimensional cases it turns out that much more can be said, and a number
of important quantities can be calculated exactly as functions of the external parameters.
Crudely speaking, these are the integrable lattice models, and the first example found was the
two-dimensional Ising model, solved by Onsager in 1944 [116].

Much more can be said on this topic, but for the purposes of this review it is best now to
move forward by two decades, and to describe the model which will be directly relevant to
our subsequent story.

3.2. The six-vertex model and Bethe ansatz equations

We shall be interested in one particular set of integrable lattice models, called the ‘ice-type’
models, or, a little more prosaically, the six-vertex models. They were first solved in 1967,
by Lieb [117] and Sutherland [118], and are among the simplest generalizations of the Ising
model. Good places to look for further details are the book [33] by Baxter, and the short
review [119] by McCoy.

The definition of the model begins with an N × N ′ lattice, with periodic boundary
conditions in both directions and, in order to avoid some annoying signs later on, N/2 even7.
Ultimately, we shall take a limit in which N → ∞. On each horizontal or vertical link of the

7 Sometimes the parity of N can be significant, however; see, for example, [120].
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Figure 6. A typical configuration of spins for the six-vertex model.

lattice, we place a spin 1 or 2, conveniently depicted by an arrow pointing either right or left
(for the horizontal links) or up or down (for the vertical links), as in figure 6.

In the ‘ice’ picture, each vertex represents an oxygen atom, and each link a bond between
neighbouring atoms. Sitting on each bond is a hydrogen ion, lying near to one or the other
end of the bond, according to the direction of the arrow. The ‘ice rule’ [121, 122] states
that each oxygen atom should have exactly two hydrogen ions close to it, and two far away.
Translated into the arrows, this implies that only those configurations that preserve the flux of
arrows through each vertex are permitted. This means that there are six options for the spins
around each site, or vertex, of the lattice (hence the alternative name ‘six-vertex’). For real
ice, all allowed configurations are equally likely; but if we want to generalize slightly, then
we can allow for differing probabilities for the different options. These overall probabilities
are calculated in two steps. First, a number W , called a (local) Boltzmann weight, is assigned
to each local possibility. If we further restrict ourselves to what is called the zero-field case,
then the Boltzmann weights should be invariant under the simultaneous reversal of all arrows,
and just three independent quantities need to be specified:

W

[
→↑

↑→
]

= W

[
←↓

↓←
]

= a; (3.1)

W

[
→↓

↓→
]

= W

[
←↑

↑←
]

= b; (3.2)

W

[
→↑

↓←
]

= W

[
←↓

↑→
]

= c. (3.3)

The relative probability of finding any given configuration is simply the product of the
Boltzmann weights at the individual vertices. A first quantity to be calculated is the sum of
these numbers over all possible configurations—the partition function, Z:

Z =
∑
{σ }

∏
sites

W
[
····
]
. (3.4)

One of the special features of integrable models is that quantities such as the partition
function (or even better, the free energy per site, defined in equation (3.9) below) can be
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evaluated exactly, at least in the ‘thermodynamic limit’, where N and N ′ both tend to infinity.
The model under discussion turns out to be integrable for all values of a, b and c. Their overall
normalization factors out trivially from all quantities, and it is convenient to parametrize
the remaining two degrees of freedom using a pair of variables ν and η, called the spectral
parameter and the anisotropy:

a(ν, η) = sin(η + iν), b(ν, η) = sin(η − iν), c(ν, η) = sin(2η). (3.5)

In calculations the anisotropy is usually held fixed, but it is useful to treat models with different
values of the spectral parameter ν simultaneously. The weights can then be drawn as in
figure 7.

For those familiar with integrable quantum field theories, this picture might suggest a
relationship between Boltzmann weights for integrable lattice models and S-matrix elements
for integrable quantum field theories, with the spectral parameter of the Boltzmann weight
proportional to the relative rapidity of two particles in the quantum field theory8. We would
not explore this aspect much further here, but a nice discussion can be found in [123].

One popular tactic for the computation of the partition function employs the so-called
transfer matrix, T. Introduce multi-indices α = (α1, α2, . . . , αN) and α′ = (α′

1, α
′
2, . . . , α

′
N)

and set

Tα′
α (ν) =

∑
{βi }

W

[
β1

α′
1

α1
β2

]
(ν)W

[
β2

α′
2

α2
β3

]
(ν)W

[
β3

α′
3

α3
β4

]
(ν) · · · W

[
βN

α′
N

αN

β1

]
(ν). (3.6)

A pictorial representation of T(ν) is given in figure 8. The definition involves a sum over one
set of horizontal links, and from the picture it is clear that the matrix indices of T correspond
to the spin variables sitting on the vertical links. These can now be summed by matrix
multiplication, with a final trace implementing the periodic boundary conditions in the vertical
direction. Thus

Z = Trace[TN ′
]. (3.7)

Calculations can now continue via a diagonalization of T. Suppose that the first few
eigenvalues, t0 > t1 > · · · are known, with eigenvectors 	(0), 	(1), . . . :∑

α′
Tα′

α 	
(j)

α′ = tj	
(j)
α . (3.8)

8 In fact, in defining the local weights a, b and c we have shifted the spectral parameter by iη from the value that
would be appropriate for an S-matrix, so as to give later equations a more standard form.
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Then, for example, the free energy per site in the limit N ′ → ∞ can be obtained as

f = − 1

NN ′ log Z = − 1

NN ′ log Trace[TN ′
] ∼ − 1

N
log t0. (3.9)

The eigenvalues t0, t1, . . . are functions of ν and η, and the remaining task is to find them.
This appears to be a very tough problem—T is a 2N × 2N matrix, and quickly becomes too
large for even the most powerful computers to handle. It is necessary to exploit some of the
special features of the model, and a popular technique for doing this goes by the name of the
Bethe ansatz. There are two steps.

(i) Make a (well-informed) guess for a form for an eigenvector of T, depending on a finite
number n of parameters ν1, . . . , νn (the roots).

(ii) Discover that this guess only works if the {νi} together solve a certain set of coupled
equations (the Bethe ansatz equations).

Letting n vary over a finite range, and for each n taking the finite set of solutions to the
corresponding Bethe ansatz equations, should then give totality of the eigenvectors of T, or at
least all those needed to capture the N → ∞ limit of the system9.

The justification of this procedure is an interesting story, or collection of stories, in its
own right; in appendix A we outline one of the more elegant approaches, a technique called
the algebraic Bethe ansatz.

For the six-vertex model, when the dust has settled the Bethe ansatz equations for the
roots {ν1, . . . , νn} are

(−1)n
n∏

j=1

sinh(2iη − νk + νj )

sinh(2iη − νj + νk)
= −aN(νk, η)

bN(νk, η)
, k = 1, . . . , n. (3.10)

This is a set of n equations for n unknowns. There is no unique solution, but rather a discrete
set. For each solution, an eigenvector |	〉 of T can be constructed, with eigenvalue

t (ν) = aN(ν, η)

n∏
j=1

g(νj − ν) + bN(ν, η)

n∏
j=1

g(ν − νj ), (3.11)

where g(ν) := a(ν − iη, η)/b(ν − iη, η) = −sin(2η + iν)/ sin(iν). To single out a given
eigenvector and eigenvalue, supplementary conditions must be imposed on the roots. In
particular, and this will be important later, the ground state eigenvalue t0(ν) turns out to
correspond, in the parameter region 0 < η < π/2, Re(ν) = 0,−η < Im(ν) < η, to the
Bethe ansatz solution with n = N/2 distinct real roots, packed as closely as possible and
symmetrically placed about the origin (see for example [33, 126, 127]). This is depicted in
figure 9.

3.3. Adding a twist

The periodic boundary conditions used above to define the transfer matrix can be modified
in such a way that integrability is not spoilt (see for example [28, 128, 129]). This does not
change the free energy per site in the thermodynamic limit, but it does modify some subleading
effects.

The twist is introduced by modifying the local Boltzmann weights on one column, or seam,
of the lattice, say the Nth (see figure 10). In the transfer matrix formulation the modification
amounts to making the substitutions

W

[
βN

α′
N

αN

→
]
(ν) 
⇒ e−iφW

[
βN

α′
N

αN

→
]
(ν) (3.12)

9 We will not go into the interesting question of the completeness of the set of BAE solutions here; see [124, 125]
for recent discussions.
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Figure 9. The νi ' s are real for the ground state.

Figure 10. The twist is introduced by modifying the local Boltzmann weights on one column.

and

W

[
βN

α′
N

αN

←
]
(ν) 
⇒ eiφW

[
βN

α′
N

αN

←
]
(ν) (3.13)

in the initial definition (3.6) of T. The algebraic Bethe ansatz works almost unchanged, with
the result that the more general transfer matrix T(ν, φ) has eigenvalues given by

t (ν, φ) = e−iφaN(ν, η)

n∏
j=1

g(νj − ν) + eiφbN(ν, η)

n∏
j=1

g(ν − νj ), (3.14)

where the set of roots {ν1, . . . , νn} satisfy the modified Bethe-ansatz equations

(−1)n
n∏

j=1

sinh(2iη − νk + νj )

sinh(2iη − νj + νk)
= −e−2iφ aN(νk, η)

bN(νk, η)
, k = 1, . . . , n. (3.15)

3.4. The XXZ model

There is a well-known connection between classical two-dimensional lattice models and
quantum spin chains. The six-vertex model is related to the (spin-1/2) XXZ spin chain, a
one-dimensional system of N lattice sites with a spin variable taking the value 1 or 2 at each
site, with each spin interacting only with its neighbours. The Hamiltonian is

HXXZ = −1

2

N∑
j=1

(
σx

j σ x
j+1 + σ

y

j σ
y

j+1 − cos 2ησ z
j σ z

j+1

)
, (3.16)
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where σα
j represents a Pauli matrix,

σx
j =

(
0 1
1 0

)
, σ

y

j =
(

0 −i

i 0

)
, σ z

j =
(

1 0
0 −1

)
, (3.17)

acting on the spin on the j th lattice site. This model is sometimes also referred to as the
Heisenberg–Ising chain, or the spin-1/2 anisotropic Heisenberg chain. The six-vertex twist
can be implemented by imposing twisted boundary conditions of the form

σ z
N+1 = σ z

1 , σ x
N+1 ± iσy

N+1 = e±i2φ
(
σx

1 ± iσy

1

)
. (3.18)

From these definitions it is not obvious that the six-vertex and XXZ models should be
related. However, it was noted in the first work on the six-vertex model [117, 118] that its
transfer matrix eigenvectors coincided with those of HXXZ , previously studied in great detail
by Yang and Yang [130]. The initial identification rested on a coincidence of Bethe ansatz
equations, and was given a more direct explanation when Baxter [131] showed that the six-
vertex transfer matrix T and the Hamiltonian of the spin chain are directly connected through
the relation

HXXZ = −i sin 2η
d

dν
ln T(ν)

∣∣∣∣
ν=−iη

− 1

2
cos 2ηI⊗N . (3.19)

Consequently, if we are able to determine the eigenvalues t0, t1, . . . of the transfer matrix we
gain, for free, information on the spectrum of the XXZ model.

We shall return to a description of the six-vertex spectrum motivated by this connection
with the XXZ model shortly, but for now we note that for all values of the twist parameter, the
Hamiltonian (3.16) commutes with the total spin operator Sz = ∑N

i=1 σ z
i

/
2. Therefore the

spectrum splits into disjoint sectors labelled by the spin m = 0, 1, 2, . . . , and the true ground
state lies in the m = 0 sector. In the six-vertex model the XXZ spin sectors correspond to
taking the number of Bethe roots n different from the ground state value of n = N/2. The
relation between the number of Bethe roots and the XXZ spin is n = N/2 − m.

3.5. Baxter’s TQ relation

So much, for now, for the Bethe ansatz. There is a particularly neat reformulation of the final
result, discovered by Baxter, that leads to an alternative way to solve the model. The first
ingredient is the fact that the transfer matrices at different values of the spectral parameter ν

commute:

[T(ν), T(ν ′)] = 0. (3.20)

(The (standard) proof of this fact is given in appendix A.) Therefore, the transfer matrices
T(ν) can be simultaneously diagonalized, with eigenvectors which are independent of ν. This
allows us to focus on the individual eigenvalues t0(ν), t1(ν), . . . as functions of ν. From the
explicit form of the Boltzmann weights and the claim that the eigenvectors are ν-independent,
these functions are entire, and iπ -periodic.

The second ingredient is the claim that, for each eigenvalue function t (ν), there exists an
auxiliary function q(ν), also entire and (at least for the ground state) iπ -periodic, such that

t (ν)q(ν) = e−iφaN(ν, η)q(ν + 2iη) + eiφbN(ν, η)q(ν − 2iη). (3.21)

We shall call this the TQ relation, though this phrase should really be reserved for the
corresponding matricial equation, involving T(ν) and another matrix Q(ν), from which the
above can be extracted when acting on eigenvectors. At first sight, it is not clear why this
should encode the whole elaborate structure of the Bethe ansatz equations—instead of one
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unknown function t (ν), we now have two, and all we know about them is that they enjoy the
curious relationship given by (3.21). But in fact this equation, combined with the simultaneous
entirety of t (ν) and q(ν), imposes constraints on t (ν) which are so strong that there is no
need to impose the BAE as a supplementary set of conditions. (Going further, Baxter was
able to establish the TQ relation by an independent argument, thereby finding an alternative
treatment of the six-vertex model which avoided the explicit construction of eigenvectors. He
then generalized this approach to the previously unsolved eight-vertex model, but we shall not
elaborate this aspect any further here.)

The BAE are extracted from (3.21) as follows. Suppose, anticipating the final result in
the notation, that the zeros of q(ν) are at ν1, . . . , νn. Given that q(ν) is iπ -periodic, it can—up
to an irrelevant overall normalization—be written as a product over these zeros as

q(ν) =
n∏

l=1

sinh(ν − νl). (3.22)

From (3.21), t (ν) is fixed by q(ν), and from (3.22), q(ν) is fixed by the set {νi}. To determine
the {νi}, set ν = νi in (3.21). On the left-hand side we then have t (νi), which is nonsingular
since t (ν) is entire, multiplied by q(νi) which is zero by (3.22). Thus the left-hand side
vanishes, and rearranging we have

q(νi − 2iη)

q(νi + 2iη)
= −e−2iφ aN(νi, η)

bN(νi, η)
(3.23)

or, using (3.22) one more time,

(−1)n
n∏

l=1

sinh(2iη − νi + νl)

sinh(2iη − νl + νi)
= −e−2iφ aN(νi, η)

bN(νi, η)
, i = 1, . . . , n. (3.24)

These are exactly the Bethe ansatz equations (3.15) for the problem, with the νi the roots. The
expression for t (ν) implied by (3.21) then matches formula (3.14), as would have been found
from a direct application of the Bethe ansatz.

3.6. The quantum Wronskian

In this review, the TQ relation will be our main tool in making the link with the theory
of ordinary differential equations. However, there are other sets of functional equations
associated with the six-vertex model which can be equally important. In principle these can
all be obtained first as operator equations (see for example [26, 31, 33, 132]), and then turned
into functional relations by specializing to individual eigenvectors. However, a full discussion
of this would take us too far afield, so instead we shall profit from the fact that we have already
obtained the TQ relation from the lattice model, and give some indications as to why these
further properties should hold.

We continue to consider the model with general (non-zero) twist, and discuss an important
consequence of identity (A.48):

t0(ν, φ) = t0(ν,−φ) ≡ t0(ν, |φ|), (3.25)

where t0 is the ground state eigenvalue of T(ν, φ) (with N/2 even) and φ is the twist parameter.
In view of (3.25), the following two TQ relations hold simultaneously:

t0(ν, |φ|)q0(ν, φ) = aN(ν, η) e−iφq0(ν + 2iη, φ) + bN(ν, η) eiφq0(ν − 2iη, φ); (3.26)

t0(ν, |φ|)q0(ν,−φ) = aN(ν, η) eiφq0(ν + 2iη,−φ) + bN(ν, η) e−iφq0(ν − 2iη,−φ), (3.27)
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where q0 is the corresponding ground state eigenvalue of the corresponding matrix Q(ν, φ).
As equations for q, these only differ in the way that the twist factors e±iφ appear, and even this
difference can be eliminated by defining

q̃0(ν, φ) := e−νφ/(2η)q0(ν, φ) (3.28)

so that10

t0(ν, |φ|)q̃0(ν, φ) = aN(ν, η)q̃0(ν + 2iη, φ) + bN(ν, η)q̃0(ν − 2iη, φ); (3.29)

t0(ν, |φ|)q̃0(ν,−φ) = aN(ν, η)q̃0(ν + 2iη,−φ) + bN(ν, η)q̃0(ν − 2iη,−φ). (3.30)

Thus q̃0(ν, φ) and q̃0(ν,−φ) both solve the single functional equation

t0(ν, |φ|)q̃(ν) = aN(ν, η)q̃(ν + 2iη) + bN(ν, η)q̃(ν − 2iη). (3.31)

This is a finite-difference analogue of a second-order ordinary differential equation, and so it
should have two linearly independent solutions; equations (3.29) and (3.30) confirm that this
is indeed the case. The quasi-periodicity in ν induced by definition (3.28), combined with
the periodicity of the ‘potential’ t0, means that q̃0(ν, φ) and q̃0(ν,−φ) can be interpreted as
the two Bloch-wave solutions to (3.31) [31, 133]. Just as in the continuum case, given two
solutions to a single second-order equation it is natural to construct their Wronskian. To this
end, we can multiply (3.29) by q̃0(ν,−φ) and (3.30) by q̃0(ν, φ), subtract and regroup terms
by defining

�(ν) := q̃0(ν + iη,−φ)q̃0(ν − iη, φ) − q̃0(ν + iη, φ)q̃0(ν − iη,−φ) (3.32)

to find

0 = aN(ν, η)�(ν + iη) − bN(ν, η)�(ν − iη). (3.33)

Recalling from (3.5) the definitions a(ν, η) = sin(η + iν), b(ν, η) = sin(η − iν), and the
fact that N is even, (3.33) implies that the function W(ν) := �(ν)/ sinhN(ν) is periodic with
period P = 2iη. However, from (3.22) and (3.28), we see that W(ν) also has the period
P ′ = 2iπ . For P ′/P = η/π irrational, W(ν) must therefore be constant; by continuity in η,
W(ν) is constant for all values of η.

Evaluating W at ν → ∞ gives an identity, the finite-lattice version of the quantum
Wronskian relation discussed by Bazhanov, Lukyanov and Zamolodchikov in [31]. Re-
expressed in terms of q0(ν, φ) it reads

e−iφq0(ν + iη, φ)q0(ν − iη,−φ) − eiφq0(ν + iη,−φ)q0(ν − iη, φ) = −2i sin(φ) sinhN(ν).

(3.34)

In deriving this result we have only treated the ground state eigenvalues of T and Q, and
we have also assumed that the twist φ is non-zero. If these restrictions are dropped, a number
of important subtleties arise, particularly in the so-called ‘root of unity’ cases when P ′/P is
rational. For more extensive discussions which address some of these issues, see, for example,
[134–136].

10 In the field theory context, q̃0 will correspond to the vacuum eigenvalue of the operator Bazhanov, Lukyanov and
Zamolodchikov denote Q, while q0 is the vacuum eigenvalue of their A.
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3.7. The fusion hierarchy and its truncation

A further functional equation results if we multiply the simultaneous TQ relations (3.29)
and (3.30) by q̃0(ν − 2iη,−φ) and q̃0(ν − 2iη, φ), respectively, and subtract. We then obtain
not the quantum Wronskian, but instead an alternative expression for t0 in terms of q̃0:

t0(ν, |φ|) = aN(ν, η)
q̃0(ν + 2iη,−φ)q̃0(ν − 2iη, φ) − q̃0(ν + 2iη, φ)q̃0(ν − 2iη,−φ)

q̃0(ν, φ)q̃0(ν − 2iη,−φ) − q̃0(ν,−φ)q̃0(ν − 2iη, φ)

= −1

2i sin φ
(q̃0(ν + 2iη,−φ)q̃0(ν − 2iη, φ) − q̃0(ν + 2iη, φ)q̃0(ν − 2iη,−φ))

(3.35)

using the previously obtained formula for the quantum Wronskian for the last equality. This
is a sign that the quantum Wronskian fits into a hierarchy of relations which we now describe.
It is convenient to change the normalizations slightly. Defining

�q(k) := 1√−2i sin φ

(
e−ikφ/2q0(ν − ikη̃, φ), eikφ/2q0(ν − ikη̃,−φ)

)T
(3.36)

with η̃ = −η + π/2 and

W[k,−k](ν) := det
(�q(k), �q(−k)

) =
∥∥∥∥∥(q(k))1 (q(−k))1

(q(k))2 (q(−k))2

∥∥∥∥∥ , (3.37)

we set

t (k/2)(ν) := W[k + 1,−k − 1](ν), k = −1, 0, 1, 2, 3, . . . . (3.38)

Then t (−1/2)(ν) = 0, and (3.34) and (3.35) imply

t (0)(ν) = [i cosh(ν)]N, t(1/2)(ν) = t0(ν). (3.39)

We can then use the following Plücker-type relation:

det(�a0, �a1) det(�b0, �b1) = det(�b0, �a1) det(�a0, �b1) + det(�b1, �a1) det(�b0, �a0) (3.40)

and the property

W[k + a,−k + a](ν) = W[k,−k](ν − iaη̃) (3.41)

to show that

t (m)(ν − iη̃)t (m)(ν + iη̃) = t (0)(ν − i(2m + 1)η̃)t (0)(ν + i(2m + 1)η̃) + t (m−1/2)(ν)t (m+1/2)(ν),

(3.42)

where the index m takes the half-integer values 1/2, 1, 3/2, . . . . Another set of relations among
the functions t (m)(ν) is also a simple consequence of identity (3.40):

t (1/2)(ν)t (m)(ν − i(2m + 1)η̃)

= t (0)(ν − iη̃)t (m+1/2)(ν − i2mη̃) + t (0)(ν + iη̃)t (m−1/2)(ν − i(2m + 2)η̃). (3.43)

The sets of functional relations (3.42) and (3.43) are called fusion hierarchies [31, 137–140].
The name comes from the fact that they can also be obtained by a process known as ‘fusion’
of the basic transfer matrix T, without introducing the auxiliary function q(ν) [141].

An important phenomenon occurs at rational values of η/π , known as truncation of the
fusion hierarchy. Here we shall just mention the case η = πM

2M+2

(
η̃ = π

2M+2

)
with 2M ∈ Z+

and φ = π
2M+2 . Due to the iπ periodicity of q(ν) we have

t (M+1/2)(ν) = 0 (3.44)
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and also

�q(2M+1) = −i√−2i sin φ

(
e

iπ
4M+4 q0

(
ν +

iπ

2M + 2
, φ
)

,−e− iπ
4M+4 q0

(
ν +

iπ

2M + 2
,−φ

))T
;

�q(−2M−1) = i√−2i sin φ

(
e− iπ

4M+4 q0(ν − iπ

2M + 2
, φ),−e

iπ
4M+4 q0

(
ν − iπ

2M + 2
,−φ

))T
,

(3.45)

which on comparing with

�q(1) = 1√−2i sin φ

(
e− iπ

4M+4 q0

(
ν − iπ

2M + 2
, φ
)

, e
iπ

4M+4 q0

(
ν − iπ

2M + 2
,−φ

))T

;

�q(−1) = 1√−2i sin φ

(
e

iπ
4M+4 q0

(
ν +

iπ

2M + 2
, φ
)

, e− iπ
4M+4 q0

(
ν +

iπ

2M + 2
,−φ

))T

,

(3.46)

shows that

t (M)(ν) = det(�q(2M+1), �q(−2M−1)) = det(�q(1), �q(−1)) = t (0)(ν). (3.47)

Thus the infinite fusion hierarchy has been reduced, or truncated, to a finite set of
functional equations (a T-system) constraining the t-functions. It is also easy to check that
relations (3.42), (3.44) and (3.47) together imply the symmetry

t (m)(ν) = t (M−m)(ν), m = 0, 1/2, . . . ,M/2. (3.48)

Truncation is important because it leads to closed sets of functional relations. Subject to
suitable analyticity properties, these can be converted into sets of integral equations which
allow the model to be solved—an example of this procedure will be given in appendix D.1,
in the slightly simpler context of the large-N limit. At generic values of φ and rational
η/π , truncation is also possible, though it has to be implemented in a more complicated way
to ensure that the analyticity properties required for the derivation of the integral equations
continue to hold [31, 141, 142].

3.8. Continuum limit of lattice models

Very often, physicists are particularly interested in the behaviour of lattice models in the
so-called ‘thermodynamic limit’, when the size of the system tends to infinity. If this limit
is taken in a suitable way near to a phase transition, short-distance details of the model get
washed away. The resulting behaviour is then said to be ‘universal’, and since it does not
depend on the precise formulation of the model, it also tells us about more realistic systems
near to their phase transitions, beyond the idealized models discussed so far. If we continue
to measure distances by the number of lattice sites, all of the universal properties will be
found in the long-distance asymptotics of quantities such as the transfer matrix eigenvalues
t0. To focus on these features, it is common to introduce a dimensionful lattice spacing d—up
to now this has been equal to one—and then let this spacing tend to zero while keeping the
‘physical’ width of the lattice, Nd, finite. This process—which may have to be accompanied
by a suitable tuning, or renormalization, of parameters to ensure that the objects of interest
retain finite values—is known as taking the continuum limit. It has the additional feature that
the limiting theory can often be studied using techniques from quantum field theory.

The six-vertex models lie at a phase transition of the more general eight-vertex model for
all 0 < η < π/2, and so are well suited to the taking of this limit. One place where universal
behaviour can then be detected is in the behaviour of the logarithm of the dominant eigenvalue
of the transfer matrix, t0. As N → ∞,

ln t0(N) = −f N +
πceff

6N
+ · · · . (3.49)
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The constant f is simply the large-N limit of the free energy per site (3.9), and such a term
is expected on general grounds. The next term is the signal of a phase transition: it depends
only algebraically on the system size, and its general form is a consequence of the scaling
symmetry characteristic of (second-order) phase transitions. If we now introduce the lattice
spacing d, replace N by L := Nd and define the subtracted/rescaled free energy to be

F := −ln t0(L) − f L (3.50)

then the ‘· · ·’ terms in (3.49) give vanishing contributions as d → 0 with L held fixed and in
this limit

F(L) = −πceff

6L
, (3.51)

where L is now a continuous (positive) number. This is the expected behaviour of the free
energy for a conformal field theory (CFT) on an infinite cylinder with circumference L. In
unitary theories with periodic boundary conditions, the proportionality constant ceff coincides
with the standard Virasoro conformal central charge c. The continuum limit of the six-vertex
model and the XXZ spin chain is described by a unitary CFT with central charge c6V = 1. The
effective central charge is c6V

eff = c6V = 1 in the periodic case, or

cT6V
eff = 1 − 6φ2

π(π − 2η)
< 1 (3.52)

in the twisted cases [143, 144].
The eigenvector 	(0) corresponding to the dominant eigenvalue t0 just discussed is called

the ground state of the model, and most of the results to be described later concern the Bethe
roots for this state. However, it is worth noting that the conformal field theory dictates the
behaviour of all states in the continuum limit of the model [145, 146]. The remaining states
are sometimes called ‘excited states’; they can be assigned an ‘energy’ as minus the rescaled
logarithm of the corresponding eigenvalue, just as was done for the ground state to obtain the
free energy F. The spectrum of the six-vertex model or XXZ model with periodic boundary
conditions then consists of states with energies that behave as [128, 146– 149]

F|{mi },{m′
i },k,k′〉(L) = ξ

(
−πceff

6L
+

2π

L
(xk,k′ + m + m′)

)
, (3.53)

where k, k′ ∈ Z,m = ∑
i mi,m

′ = ∑
i m

′
i with mi and m′

i non-negative integers, and
xk,k′ = k2x +k′2/(4x) with x = (π −2η)/2π . The quantity ξ is a model-dependent parameter
(the velocity of light). It is 1 for the six-vertex model and, in the notation used here, π sin 2η/2η

for the XXZ model. (Alternatively, it could be made equal to 1 simply by multiplying the
XXZ Hamiltonian by an overall factor [150].) For each pair k, k′, the state with m = m′ = 0
is associated in the CFT with what is called a ‘primary field’ with scaling dimension x. The
states with other values of m and m′ are called ‘descendants’ of this field, and the even spacing
of the energies of these descendants is a characteristic feature of the spectrum of a CFT. A
similar tower-like structure also arises when twisted boundary conditions are imposed [147].
The terminology of primary fields and descendants relates to an underlying symmetry of the
conformal field theories, the infinite-dimensional Virasoro algebra. For more on these topics,
see, for example, [34].

It turns out that the universal behaviour described above corresponds to a special limit of
the TQ and Bethe ansatz equations, in which their forms simplify. For this, it will be more
convenient to re-express the results obtained in sections 3.2 and 3.5 using an alternative set of
variables. Setting

E′
i = e2νi , ω = −e−2iη = e2iη̃, (3.54)
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the BAE become
n∏

l=1

(
E′

l − ω2E′
i

E′
l − ω−2E′

i

)
= −ω2n−N e−i2φ

(
1 + ωE′

i

1 + ω−1E′
i

)N

, i = 1, . . . , n. (3.55)

If we continue to concentrate on the ground state, then, as already mentioned, n = N/2, and
all of the νi lie on the real axis. This translates into all of the E′

i being real and positive, and
eliminates the factor ω2n−N from the RHS of the BAE. In the limit N → ∞, the number
of roots needed to describe the ground state diverges. This complication is to some extent
compensated by the fact that the Bethe ansatz equations for the ‘extremal’ roots, those νi lying
to the furthest left or right along the real axis, simplify in this limit, at least for η > π/4. Since
the left and right sets of extremal roots are constrained by the symmetry

q0(−ν, φ) = q0(ν,−φ) ↔ νi(φ) = −νN/2+1−i (−φ), (3.56)

without loss of generality we shall concentrate on the left edge only.
The left edge of the root distribution tends to −∞, as − 2η

π
log N . (This behaviour can be

extracted, for example, from the results of [28].) Hence the lowest lying E′
i scale to zero as

E′
i ∼ EiN

−4η/π . (3.57)

To capture their behaviour, replace each E′
i with N−4η/πEi in the BAE, and then hold the Ei

finite as N → ∞. The BAE simplify to the following:
∞∏
l=1

(
El − ω2Ei

El − ω−2Ei

)
= −e−2iφ, i = 1, . . . ,∞. (3.58)

(For η � π/4, the product must be regulated to ensure convergence in the N → ∞ limit,
which complicates the story. We will not discuss this any further here, except to remark that
it corresponds to the leaving of the semiclassical domain mentioned below.)

A similar limit can be performed on q0(ν), taking care to adjust its normalization to ensure
a finite and non-zero result as N → ∞:

q0(ν) → q0(E) := lim
N→∞

[eNν/2q0(ν)]ν= 1
2 ln(EN−4η/π ) =

∞∏
l=1

(
1 − E

El

)
. (3.59)

Taking the same limit with t0(ν) and in general on the functions t (n)(ν) results in a simplification
of the TQ relation to

t0(E)q0(E) = eiφq0(ω
2E) + e−iφq0(ω

−2E), (3.60)

and the fusion relations (3.42) and (3.43) become

t (m)(ω−1E)t(m)(ωE) = 1 + t (m−1/2)(E)t(m+1/2)(E) (3.61)

and

t (1/2)(E)t(m)(ω2m+1E) = t (m+1/2)(ω2mE) + t (m−1/2)(ω2m+2E). (3.62)

These equations control the distribution of the extremal roots in the large-N limit.
Physically, they are important because they turn out to determine the constant ceff which
controls the leading finite-N corrections to the ground state energy—see appendix E and for
example, [28].

As already mentioned, for ω a root of unity the fusion relations truncate. For
η = πM/(2M + 2) with 2M ∈ Z+, and φ = π/(2M + 2), the truncated set of t-equations can
elegantly be written as

t (m)(ω−1E)t(m)(ωE) = 1 +
(h−1)/2∏
j=1/2

(
t (j)(E)

)G2j,2m
,m = 1/2, 1, . . . , (h − 1)/2, (3.63)
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where h = 2M,ω = eπ i/(M+1) and Gab is the incidence matrix of the Ah−1 Dynkin diagram:

1 2 3 nn−1

In the case of M = 3/2 and M = 2 the equations are respectively

t (1/2)(ω−1E)t(1/2)(ωE) = 1 + t (1/2)(E); (3.64)

and

t (1/2)(ω−1E)t(1/2)(ωE) = 1 + t (1)(E)

t(1)(ω−1E)t(1)(ωE) = 1 + (t (1/2)(E))2.
(3.65)

A first hint of a link with the theory of ordinary differential equations comes on comparing
equation (3.64) with the title and content of Sibuya’s paper [151]. ‘On the functional equation
f (λ) + f (ωλ)f (ω−1λ) = 1, (ω5 = 1)’. A precise ODE/IM equivalence was first established
in [1] by mapping (3.65) into a functional relation which had previously been associated with
the quartic anharmonic oscillator by Voros [21], and more importantly by showing an exact
equivalence between the functions—and not just the functional relations—involved in the two
setups. As explained in appendix E, techniques developed in the study of integrable models
allow functional equations of the type (3.63) to be transformed into sets of nonlinear integral
equations known as thermodynamic Bethe ansatz (TBA) equations [152].

In conclusion: starting from the six-vertex model with twisted boundary conditions
and using the algebraic Bethe ansatz approach we have derived sets of functional relations:
Baxter’s TQ relation, the quantum Wronskian and the fusion hierarchy. Anticipating the
correspondence with the theory of ordinary differential equations the continuum limit was
taken, with the final set of equations encoding information about the c = 1 conformal field
theory defined on a cylinder with twisted boundary conditions, with the value of the twist
depending on the twist in the original six-vertex model.

The precise way to extract information such as the effective central charge ceff and the
scaling dimensions goes through the transformation of functional relations into nonlinear
integral equations (see appendix D.1). However, it turns out that there are other ways to
derive the same sets of functional and integral equations rather than starting from the six-
vertex model. One possibility is to work directly in field theory and exploit the fact that
c = 1 CFT also corresponds to the ultraviolet limit of the sine-Gordon model. The derivation
of the integral equations makes use of the sine-Gordon scattering matrix description and as
mentioned before goes under the name of the thermodynamic Bethe ansatz [152].

Another approach also directly based on a CFT was proposed by Bazhanov, Lukyanov
and Zamolodchikov in [30] and further developed in [31, 32]. The starting point of [30–32]
is not the unitary c = 1 conformal field theory defined on a strip geometry with different
boundary conditions as above, but a CFT with central charge

c = 1 − (β − β−1)2 < 1, 0 < β < 1, (3.66)

with periodic boundary conditions. This theory is neither unitary nor minimal and at fixed
values of β the Hilbert space still depends on a free parameter p. A brief summary of results
relevant for the ODE/IM correspondence is reported in the following section.

3.9. TQ equations in continuum CFT: the BLZ approach

In [30–32], Bazhanov, Lukyanov and Zamolodchikov showed how for integrable models
the structures such as Baxter’s T and Q matrices may also be studied directly using field-
theoretic methods. BLZ considered a CFT with central charge c parametrized in terms
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of β according to (3.66). The description of the conformal spectrum of the XXZ model
in terms of towers of states, each tower consisting of a highest weight state |p〉 and its
descendants, applies to all CFTs. In this case, the highest weight states have conformal
dimension �p = (p/β)2 + (c − 1)/24, where p is a continuous parameter.

For each tower of states, BLZ define a continuum analogue of the lattice transfer matrix
T, an operator-valued entire function T(s, p). In analogy with (3.28), they also define a pair of
operator-valued functions Q±(s, p). Together, these operators mutually commute and satisfy
a TQ relation

T(s, p)Q±(s, p) = Q±(q2s, p) + Q±(q−2s, p) (3.67)

with q = exp(iπβ2). Within each tower the highest weight eigenvalues

T (s, p) = 〈p|T(s, p)|p〉 (3.68)

and

Q±(s, p) = 〈p|s∓P/β2
Q±(s, p)|p〉, (3.69)

satisfy the TQ relation

T (s)Q±(s) = e∓2π ipQ±(q−2s) + e±2π ipQ±(q2s), (3.70)

where P is an operator such that P|p〉 = p|p〉. If we set η = π
2 (1 − β2), this relation

between the six-vertex anisotropy η and the coupling β ensures that q2 = exp(2iπβ2) is
equal to ω2 = exp(−4iη) and the BLZ and continuum six-vertex TQ relations match perfectly.
Moreover, for β2 in the so-called semiclassical domain 0 < β2 < 1/2, the eigenvalue Q+(s)

can be written as a convergent product over its zeros {sk}:

Q+(s) =
∞∏

k=1

(
1 − s

sk

)
, (Q+(0) = 1). (3.71)

Thus a set of Bethe ansatz equations follows from the TQ relation and the entirety in s of the
eigenvalues:

∞∏
l=1

(
sl − q2si

sl − q−2si

)
= −e4π ip, i = 1, . . . ,∞. (3.72)

The other elements of the lattice picture also appear directly in the continuum context.
From the identity operator T0(s) and T 1

2
(s) ≡ T(s), an infinite set of mutually commuting

operators is built using the fusion relations

Tj (qs)Tj (q
−1s) = 1 + Tj− 1

2
(s)Tj+ 1

2
(s), j = 1

2 , 1, 3
2 , . . . . (3.73)

At rational values of the parameter β2, the hierarchy truncates to a finite set of operators, just
as in the lattice case. Alternatively, the operators Tj (s) are given directly in terms of the Q’s:

2i sin(2πP)Tj (s) = Q+(q
2j+1s)Q−(q−2j−1s) − Q+(q

−2j−1s)Q−(q2j+1s). (3.74)

Evaluating on the state |p〉 with j = 0, we find the continuum version of the quantum
Wronskian

q
2p

β2 Q+(qs)Q−(q−1s) − q
−2p

β2 Q+(q
−1s)Q−(qs) = 2i sin(2πp), (3.75)

from which we deduce Q−(s, p) = Q+(s,−p).
Since much of the current interest in the functional-relations approach to integrable models

is focused on the continuum field theory applications, we concentrate on the above version
of the TQ relation in the remainder of these notes. However, it should be remembered that
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the link with the theory of ordinary differential equations applies equally to lattice models, so
long as a large-N limit is taken in a suitable way. To be more precise, by setting

β2 = 1 − 2η

π
, p = φ

2π
(3.76)

one gets a full match between the six-vertex and the BLZ functional relations. Furthermore,
for a non-unitary CFT on a cylinder with periodic boundary conditions the effective central
charge is given by

ceff = c − 24�min. (3.77)

We therefore see that ceff = c − 24�p=0 = 1 corresponds to the effective central charge for
the untwisted six-vertex model. And, within a single p sector, the effective central charge
associated with the highest weight state |p〉 is

c
(p)

eff = c − 24�p = 1 − 24

(
p

β

)2

, (3.78)

which matches the effective central charge for the six-vertex model with twisted boundary
conditions φ.

Bazhanov, Lukyanov and Zamolodchikov also discovered a relationship between the T
and Q operators and (perturbed) boundary conformal field theory [30], which was followed
up in later work [153–156]. In the long term this probably corresponds to the most fertile
ground for applications of the ODE/IM correspondence. But as a description of this would
take us too far from the themes of this review, we address the interested readers to the papers
[30, 154–156].

3.10. Summary

We conclude our survey of integrable lattice models with a summary of the vocabulary
introduced thus far, specializing to the simplified case of the continuum limit. In order to solve
the six-vertex model, it suffices to diagonalize the

transfer matrix T

which depends on the

spectral parameter ν

and has

eigenvalues t (ν).

These can be given in terms of the

Bethe roots {Ei}
which solve

Bethe ansatz equations
∏(

El−ω2Ei

El−ω−2Ei

)
= −e−i2φ

and these can be neatly encapsulated in Baxter’s

TQ relation t (ν)q(ν) = e−iφq(ν + 2iη) + eiφq(ν − 2iη).

4. Ordinary differential equations and functional relations

Surprisingly, the functional equations found in the last section also govern the problems in
PT -symmetric quantum mechanics discussed in section 2. To understand how this comes
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about, we must first return to the subject of PT -symmetric eigenvalue problems and their
generalizations in a little more depth.

4.1. General eigenvalue problems in the complex plane

We begin with one piece of unfinished business from section 2: what goes wrong with the
Bender–Boettcher problem at M = 2, and what can be done to resolve it? In figures 2
and 3, the energy levels continued smoothly past M = 2, but in fact this can only be achieved
by implementing a suitable distortion of the problem as originally posed. Consider the situation
precisely at M = 2: the Hamiltonian is p2 − x4, an ‘upside-down’ quartic oscillator, and a
simple WKB analysis (about which more shortly) shows, instead of the exponential growth or
decay more generally found, wavefunctions behaving as x−1 exp(±ix3/3) as x tends to plus
or minus infinity along the real axis. All solutions thus decay, albeit algebraically, and this
complicates matters significantly. The problem moves from what is called the limit-point to
the limit-circle case (see [45, 46]), and additional boundary conditions should be imposed at
infinity if the spectrum is to be discrete.

While interesting in its own right, this is clearly not the right eigenproblem if we wish
to find a smooth continuation from the region M < 2. Instead, it is necessary to enlarge the
perspective and treat x as a genuinely complex variable. This has been discussed by many
authors, and is particularly emphasized in the book by Sibuya [20], though the treatment which
follows is perhaps closer to that of [22, 23].

The key is to examine the behaviour of solutions as |x| → ∞ along a general ray in the
complex plane, in spite of the fact that the only rays involved in the problem as initially posed
were the positive and negative real axes. The WKB approximation tells us that

ψ(x) ∼ P(x)−1/4 e± ∫ x√
P(t)dt (4.1)

as |x| → ∞, with P(x) = −(ix)2M + l(l + 1)x−2 − E. (This is easily derived by substituting
ψ(x) = f (x)eg(x) into the ODE.) Since the problem was set up with a branch cut running up
the positive-imaginary axis, it is natural to define general rays in the complex plane by setting
x = ρeiθ/i with ρ being real, as illustrated in figure 11. For M > 1, the leading asymptotic
predicted by (4.1) is not changed if P(x) is replaced by −(ix)2M , and substituting into the
WKB formula we see two possible behaviours, as expected of a second-order ODE:

ψ± ∼ P −1/4 exp

[
± 1

M + 1
eiθ(1+M)ρ1+M

]
. (4.2)

For most values of θ , one of these solutions will be exponentially growing, the other
exponentially decaying. But whenever Re[eiθ(1+M)] = 0, the two solutions swap rôles and
there is a moment when both oscillate, and neither dominates the other. The relevant values
of θ are

θ = ± π

2M + 2
, ± 3π

2M + 2
, ± 5π

2M + 2
, . . . . (4.3)

(Confusingly, the rays that these values of θ define are sometimes called ‘anti-Stokes lines’,
and sometimes ‘Stokes lines’. See, for example, [157].)

Whenever one of these lines lies along the positive or negative real axis, the eigenvalue
problem as originally stated becomes much more delicate. Increasing M from 1, the first time
that this happens is at M = 2, the case of the upside-down quartic potential discussed above.
But now we see that the problem arose because the line along which the wavefunction was
being considered, namely the real axis, happened to coincide with an anti-Stokes line11. We

11 As just mentioned, some would have called this a Stokes line.
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Figure 12. A possible wavefunction contour for M > 2.

also see how the problem can be averted. Since all functions involved are analytic, there is
nothing to stop us from examining the wavefunction along some other contour in the complex
plane. In particular, before M reaches 2, the two ends of the contour can be bent downwards
from the real axis without changing the spectrum, so long as their asymptotic directions do
not cross any anti-Stokes lines in the process. Having thus distorted the original problem, M
can be increased through 2 without any difficulties. The situation for M just bigger than 2 is
illustrated in figure 12, with the anti-Stokes lines shown dashed and the wiggly line a curve
along which the wavefunction ψ(x) can be defined.

The wedges between the dashed lines are called Stokes sectors, and in directions out
to infinity which lie inside these sectors, wavefunctions either grow or decay exponentially,
leading to eigenvalue problems with straightforward, and discrete, spectra. Note that once
M has passed through 2, as in figure 12, the real axis is once again a ‘good’ quantization
contour—but for a different eigenvalue problem, which is not the analytic continuation of the
original M < 2 problem to that value of M. (For the analogue of figure 2 for this new problem,
see figure 20 of [24].) Going further, we could choose any pair of Stokes sectors for the start
and finish of our contour. A priori, each pair of sectors defines a different problem, though we
shall see later that some of these problems are related to simple variable changes.

All of the problems do share one feature—their quantization contours begin and end
in the neighbourhood of the point x = ∞. In the terminology of the WKB method, they
are related to ‘lateral’ connection problems [158]. There is one other special point for the
ordinary differential equation, namely the origin, and this provides another natural place where
quantization contours can end. Contours which join x = 0 to x = ∞ lead to what are called
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Figure 13. Some further quantization contours.

‘radial’ (or central) connection problems, and with suitable boundary conditions they can also
have interesting, discrete, spectra. However, if both ends of the contour are placed at x = 0,
the resulting eigenvalue problem is always trivial. Some sample quantization contours are
shown in figure 13.

We should pause for a moment to consider which boundary conditions can be imposed at
the origin, in order to understand why x = 0 and |x| = ∞ behave differently as end points
of quantization contours. Even with the angular-momentum-like term l(l + 1)x−2 included,
the singularity at the origin is much milder than that at |x| = ∞, and irrespective of the
direction in which it is approached, solutions there behave algebraically, as xl+1 or x−l . For
this reason the complications associated with Stokes sectors do not arise in the neighbourhood
of the origin, and there are just two natural boundary conditions to impose there—we can
either demand that the solution behaves as xl+1, or as x−l (the more singular of these two
boundary conditions being defined by analytic continuation). This contrasts with the situation
near |x| = ∞, where we can ask that a solution be subdominant in any one of the potentially
infinitely many different Stokes sectors. Expressed more technically, the ordinary differential
equation has two singular points, one at the origin and one at infinity. The singular point at the
origin is regular, and solutions have straightforward series expansions in its vicinity. These
converge in the full neighbourhood of the origin, and can be analytically continued in a simple
way12. Infinity, on the other hand, is an irregular singular point, in the neighbourhood of
which solutions have asymptotic expansions which only hold in selected Stokes sectors. This
makes analytic continuation around the point at infinity much more subtle, and indeed this
will be a major theme in the subsequent development.

To summarize: associated with an ODE of the type under consideration there are many
natural eigenvalue problems, which fall into two classes. Problems in the first, lateral, class
are defined by specifying a pair of Stokes sectors at infinity, and then asking for the values
of E at which there exist solutions to the equation which decay exponentially in both sectors
simultaneously. Problems in the second, radial, class are defined by demanding decay in a
single Stokes sector at infinity, and imposing one of the two simple boundary conditions at
the origin. The questions in PT -symmetric quantum mechanics discussed in section 2 are all
related to lateral problems, with one particular pair of Stokes sectors selected. Considerations
of analytic continuation have led us to put all pairs of sectors on an equal footing, and we
completed the story by bringing in the radial problems as well. But at this stage each eigenvalue
problem sits on an isolated island, each with its own private spectrum.

12 Cases with 2M not an integer fall just outside the treatments in the standard texts, but they behave in essentially
the same way—see, for example, [159]. We have also glossed over some details, such as the logarithms which can
arise in certain situations. More background on these issues can be found in [160].



Topical Review R231

In the following subsection, we shall start to construct some bridges between the islands,
using methods inspired by earlier work of Sibuya and of Voros. Remarkably, these bridges
turn out to be precisely the functional equations which had previously arisen in the context of
integrable quantum field theory.

4.2. A simple example

To illustrate the basic ideas in the simplest possible way, for the time being we set l(l + 1) = 0,
so we are dealing with the original Bender–Boettcher family of eigenproblems:

− d2

dx2
ψ(x) − (ix)2Mψ(x) = Eψ(x), ψ ∈ L2(C). (4.4)

Now that the perspective has been widened to encompass eigenvalue problems on general
contours, it is convenient to eliminate the factors of i appearing everywhere by making the
variable changes

x → x/i, E → −E (4.5)

so that the differential equation becomes[
− d2

dx2
+ x2M − E

]
ψ(x) = 0. (4.6)

This also moves the branch cut onto the negative real axis, and the initial quantization contour
onto the imaginary axis. (This final point explains why the reality of the spectrum remains a
non-trivial question, despite the fact that the coefficients in (4.6) are all real.)

Next, we need to develop our treatment of ordinary differential equations in the complex
domain, relying largely on the work of Sibuya and co-workers [20, 161]. The key result is the
following.

• The ODE (4.6) has a ‘basic’ solution y(x,E) such that

(i) y is an entire function of x and E. (Though, because of the multivalued potential, x lives
on a cover of C\{0} if 2M /∈ Z.13 )

(ii) As |x| → ∞ with |arg x| < 3π/(2M + 2),

y ∼ 1√
2i

x−M/2 exp

[
− 1

M + 1
xM+1

]
; (4.7)

y ′ ∼ − 1√
2i

xM/2 exp

[
− 1

M + 1
xM+1

]
. (4.8)

(Though there are small modifications for M � 1—see, for example, [16].)

Furthermore, properties (i) and (ii) fix y uniquely.
The second property can be understood via the WKB discussion of section 4.1. With the

shift from x to x/i, the anti-Stokes lines for (4.6) are

arg(x) = ± π

2M + 2
, ± 3π

2M + 2
, . . . (4.9)

and in between them lie the Stokes sectors, which we label by defining

Sk :=
∣∣∣∣arg(x) − 2πk

2M + 2

∣∣∣∣ < π

2M + 2
. (4.10)

13 The original work of Hseih and Sibuya [161] concerned only the case 2M ∈ N, but the result also holds for the
more general situation 2M ∈ R+ of equation (4.6), so long as the branching at the origin is taken into account. This
generalization was explicitly discussed by Tabara in [162].
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Figure 14. Three Stokes sectors for the ODE (4.6), with M = 2.1.

Three of these sectors are shown in the figure 14, a 90◦ rotation of figure 12.
The asymptotic given as property (ii) then matches the result of a WKB calculation in

S−1 ∪ S0 ∪ S1. The determination of the large |x| behaviour of the particular solution y(x,E)

beyond these three sectors is a non-trivial matter, since the continuation of a limit is not
necessarily the same as the limit of a continuation. This subtlety is related to the so-called
Stokes phenomenon, and it can be handled using objects known as Stokes multipliers, to be
introduced shortly.

One more piece of terminology: an exponentially growing solution in a given sector is
called dominant (in that sector); one which decays there is called subdominant. It is easy
to check that y as defined above is subdominant in S0, and dominant in S−1 and S1. A
subdominant solution to a second-order ODE in a sector is unique up to a constant multiplier;
this is why the quoted asymptotics are enough to pin down y uniquely.

Having identified one solution to the ODE, we can now generate a whole family using
a trick due to Sibuya. Consider the function ŷ(x, E) := y(ax,E) for some (fixed) a ∈ C.
From (4.6), ŷ(x, E) satisfies[

− d2

dx2
+ a2M+2x2M − a2E

]
ŷ(x, E) = 0. (4.11)

(This is sometimes given the rather grand name of ‘Symanzik rescaling’.) If a2M+2 = 1,
shifting E to a−2E shows that ŷ(x, a−2E) again solves (4.6). Defining

ω := e2π i/(2M+2) (4.12)

and

yk(x,E) := ωk/2y(ω−kx, ω2kE), (4.13)

we then have the following statements

• yk solves (4.6) for all k ∈ Z. (This follows since (ω−k)2M+2 = 1.)
• Up to a constant, yk is the unique solution to (4.6) subdominant in Sk . (This follows easily

from the asymptotic of y.)
• The functions yk, yk+1 are linearly independent for all k, so each pair {yk, yk+1} forms a

basis of solutions for (4.6). (This follows on comparing the asymptotics of yk and yk+1 in
either Sk or Sk+1.)

We have almost arrived at the TQ relation. Next, the fact that y−1 can be expanded in the
{y0, y1} basis shows that a relation of the following form must hold:

y−1(x, E) = C(E)y0(x, E) + C̃(E)y1(x, E). (4.14)
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This is an example of a Stokes relation, with the coefficients C(E) and C̃(E) Stokes multipliers.
They can be expressed in terms of Wronskians, where [163] the Wronskian of two functions
f and g is

W [f, g] := fg′ − f ′g. (4.15)

Given two solutions f and g of a second-order ODE with vanishing first-derivative term, their
Wronskian W [f, g] is independent of x, and vanishes if and only if f and g are proportional.
As a convenient notation we set

Wk1,k2 := W [yk1 , yk2 ] = yk1y
′
k2

− y ′
k1

yk2 (4.16)

and record the following two useful properties14:

Wk1+1,k2+1(E) = Wk1,k2(ω
2E), W0,1(E) = 1. (4.17)

Now ‘taking Wronskians’ of the Stokes relation (4.14) first with y1 and then with y0 shows
that

C = W−1,1

W0,1
, C̃ = −W−1,0

W0,1
= −1 (4.18)

and so the relation itself can be rewritten as

C(E)y0(x, E) = y−1(x, E) + y1(x, E), (4.19)

or, in terms of the original function y, as

C(E)y(x,E) = ω−1/2y(ωx, ω−2E) + ω1/2y(ω−1x, ω2E). (4.20)

This looks very like a TQ relation. The only fly in the ointment is the x-dependence of the
function y. But this is easily fixed: we just set x to zero. We can also take a derivative with
respect to x before setting x to zero, which swaps the phase factors ω±1/2. So we define

D−(E) := y(0, E), D+(E) := y ′(0, E). (4.21)

Then the Stokes relation (4.20) implies

C(E)D∓(E) = ω∓1/2D∓(ω−2E) + ω±1/2D∓(ω2E), (4.22)

and precisely matches the forms of the TQ equations (3.60) and (3.70) if the twist parameter
is set to φ = 2πp = π/(2M + 2). Although the details are at this stage sketchy—more will
be provided in later sections—we can already see how some concepts in the two worlds of
integrable models and ordinary differential equations must be related:

Six-vertex model with twist Schrödinger equation with
φ = 2πp = π/(2M + 2) homogeneous potential x2M

Spectral parameter ↔ Energy
Anisotropy ↔ Degree of potential
Transfer matrix ↔ The Stokes multiplier C
Q operator ↔ D (E): the value of y(x, E) at x = 0

If y on the last line is replaced by y ′, then the twist changes to φ = −π/(2M + 2).
A small puzzle remains at this stage: why should one particular value of the twist in

the integrable model be singled out for a link with an ordinary differential equation? This
was resolved shortly after the original observation in [1], when Bazhanov, Lukyanov and
Zamolodchikov [2] pointed out that including an angular-momentum-like term l(l + 1)/x2

allowed Q operators at other values of the twist to be matched. The details, and a further small
generalization of the basic ODE (4.6), will be covered in section 5.
14 The normalizations in (4.7) and (4.13), which differ from those adopted by Sibuya, were expressly chosen so as to
simplify these two formulae.
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Figure 15. |x|-potential, even sector: the ground state wavefunction.
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x

Figure 16. |x|-potential, odd sector: the first excited state wavefunction.

4.3. The spectral interpretation

How should we think about C and D? In fact they are spectral determinants. The spectral
determinant of an eigenvalue problem is a function which vanishes exactly at the eigenvalues
of that problem: it generalizes to infinite dimensions the characteristic polynomial det(M−λI)
of a finite-dimensional matrix. Recall that C(E) is equal to the Wronskian W−1,1(E). Thus
C(E) vanishes if and only if W [y−1, y1] = 0, in other words if and only if E is such that
y−1 and y1 are linearly dependent. In turn, this is true if and only if the ODE (5.1) has a
solution decaying in the two sectors S−1 and S1 simultaneously, which is exactly the lateral
eigenvalue problem discussed in section 2, modulo the trivial redefinitions of x and E. This is
enough to deduce that, up to a factor of an entire function with no zeros, C(E) is the spectral
determinant for the Bender–Boettcher problem15. Even this ambiguity can be eliminated, via
Hadamard’s factorization theorem, once the growth properties of the functions involved have
been checked; see [4] for details. By its definition, the zeros of D−(E) are the values of E at
which the function y(x), vanishing at x = ∞, also vanishes at x = 0. Likewise, the zeros of
D+(E) are the values of E at which y(x) has zero first derivative at x = 0. Thus D∓(E) are
also spectral determinants. Note that the vanishing of D− or D+ corresponds to there existing
normalizable wavefunctions for the equation on the full real axis, with potential |x|2M , which
are odd or even, respectively, as illustrated in figures 15 and 16; this explains the labelling
convention adopted earlier.

15 Since we performed a variable change in this section compared with the discussion in section 2, it is in fact C(−E)

which provides the spectral determinant for the Bender–Boettcher problem as originally formulated.
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This insight allows a gap in the correspondence to be filled. We mentioned in section 3.2
that while the TQ relation is very restrictive, it does not have a unique solution. So to claim
that D−(E) is ‘equal’ to A+(λ, p) begs the question: which A+(λ, p)? To answer, we first
note that the radial problem for which D−(E) is the spectral determinant, in contrast to the
lateral Bender–Boettcher problem, is self-adjoint, and so all of its eigenvalues are guaranteed
to be real. Back in the integrable model, we mentioned previously that there is only one
solution to the BAE with all roots real, so the question is answered: the relevant A+(λ) is that
corresponding to the ground state in the spin-zero sector of the model.

5. Completing the dictionary

5.1. Adding angular momentum

We now restore the angular momentum term, and consider the differential equation[
− d2

dx2
+ x2M +

l(l + 1)

x2

]
�(x) = E�(x). (5.1)

This is the ‘π/2-rotated’ version of the generalized Bender–Boettcher problem (2.5). In
the process of discussing this ODE we shall fill in some of the technical details skipped
previously. The l = 0 case was the subject of the first ODE/IM correspondence in [1], while
the generalization to l �= 0 was introduced in [2]. The initial treatment below follows [4].

At the origin, solutions to (5.1) behave as a linear combination of xl+1 and x−l . As
mentioned in section 4.1, a natural eigenproblem for this equation asks for values of E for
which there is a solution that vanishes as x → +∞, and behaves as xl+1 as x → 0. In
the Stokes/WKB language this is a radial problem. For Re l > −1/2, the condition at the
origin is equivalent to the demand that the usually dominant x−l behaviour there should be
absent; outside this region, more care is needed, but the problem can be defined by analytic
continuation. This issue will be discussed in more detail in section 5.4 below.

As for the simple example above we first employ Sibuya’s trick. From the uniquely
determined solution y(x,E, l), with large, positive x asymptotic [20]16

y(x,E, l) ∼ x−M/2

√
2i

exp
(
− xM+1

M+1

)
, (5.2)

we generate a set of functions

yk(x,E, l) = ωk/2y(ω−kx, ω2kE, l), ω = e
2π i

2M+2 , k ∈ Z (5.3)

all of which solve (5.1). As before, any pair {yk, yk+1} forms a basis of the two-dimensional
space of solutions, and so y−1 can be written as a linear combination of y0 and y1. Rearranging
the expansion and using the properties (4.16), which continue to hold with the addition of the
angular-momentum term,

C(E, l)y0(x, E, l) = y−1(x, E, l) + y1(x, E, l), (5.4)

where Stokes multiplier C(E, l) again takes a simple form in the normalizations we have
chosen:

C(E, l) = W [y−1, y1]/W [y0, y1] = W [y−1, y1]. (5.5)

16 The result concerning the entirety of y proved by Sibuya (see [20]) at l = 0, 2M ∈ N also holds for the more
general situation of equations (5.1) and (6.1) below (so long as the branching at the origin is again taken into account).
The l = 0, 2M ∈ R+ case was discussed in [162], while the generalization to a potential P(x)/x2 with P(x) a
polynomial in x was studied by Mullin [164], and more recently in [165]. It is also worth noting that with a change
of variable it is possible to map (5.1) and (6.1) with l ∈ R, 2M ∈ Q+ onto particular cases of those treated in [164].
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There is one last complication: the angular-momentum term in (5.1) means x cannot simply be
set to zero in (5.4) to find a TQ relation. Instead y should be projected onto another solution,
defined via its asymptotics as x → 0. Given that solutions near x = 0 behave as linear
combinations of xl+1 and x−l , a solution ψ(x,E, l) can be defined by the requirement

ψ(x,E, l) ∼ xl+1 + O(xl+3). (5.6)

This defines ψ uniquely provided Re l > −3/2. A second solution can be obtained from the
first by noting that the differential equation—though not the boundary condition—is invariant
under the analytic continuation l → −1 − l. As a result, ψ(x,E,−1 − l) also solves (5.1).
Near the origin, it behaves as x−l , and so at generic values of l the pair of solutions

ψ+(x, E) := ψ(x,E, l),

ψ−(x, E) := ψ(x,E,−1 − l)
(5.7)

are linearly independent. There are some subtleties to this procedure at isolated values of l, to
which we shall return in section 5.4 below. However, they do not affect the initial argument.
In discussions of the radial Schrödinger equation (see, for example, chapter 4 of [166]), ψ+ is
sometimes called the regular solution, if Re l > −1/2.

We now take the Wronskian of both sides of (5.4) with ψ(x,E, l) to find an x-independent
equation

C(E, l)W [y0, ψ](E, l) = W [y−1, ψ](E, l) + W [y1, ψ](E, l). (5.8)

To relate the objects on the right-hand side of this equation back to W [y0, ψ], we first define
a set of ‘rotated’ solutions by analogy with (5.3):

ψk(x,E, l) = ωk/2ψ(ω−kx, ω2kE, l), k ∈ Z. (5.9)

These also solve (5.1), and a consideration of their behaviour as x → 0 shows that

ψk(x,E, l) = ω−(l+1/2)kψ(x,E, l). (5.10)

In addition,

W [yk, ψk](E, l) = ωkW [y(ω−kx, ω2kE, l), ψ(ω−kx, ω2kE, l)]

= W [y,ψ](ω2kE, l). (5.11)

Combining these results,

W [yk, ψ](E, l) = ω(l+1/2)kW [y,ψ](ω2kE, l) (5.12)

and so, setting

D(E, l) := W [y,ψ](E, l), (5.13)

the projected Stokes relation (5.8) is

C(E, l)D(E, l) = ω−(l+1/2)D(ω−2E, l) + ω(l+1/2)D(ω2E, l). (5.14)

5.2. Matching TQ and CD relations

Finally we are ready to make the precise connection with the TQ relation (3.70). As a
shorthand, define

D∓(E) := W [y,ψ±](E, l) (5.15)

(so D−(E) ≡ D(E, l) and D+(E) ≡ D(E,−1 − l)). Then (5.14) taken at l and −1 − l

becomes

C(E, l)D∓(E) = ω∓(2l+1)/2D∓(ω−2E) + ω±(2l+1)/2D∓(ω2E). (5.16)
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If we set

β2 = 1

M + 1
, p = 2l + 1

4M + 4
(5.17)

then the match between the general TQ relation (3.70) and the Stokes relation (5.16) is perfect,
with the following correspondences between objects from the IM and ODE worlds:

T ↔ C

Q± ↔ D∓.

The mapping could also have been made onto the limiting form of the Bethe ansatz equations
for the six-vertex model with twisted boundary conditions that was obtained in section 3.5. In
this case we have

t ↔ C

q ↔ D,
(5.18)

and, as mentioned before, the relationships between the anisotropy parameter η and the twist φ
of the lattice model, and the parameters M and l appearing in the potential of the Schrödinger
equation are

η = π

2

M

M + 1
, φ = (2l + 1)π

2M + 2
. (5.19)

The exact mapping between the functions appearing in these equations can be found by
examining the functions at E = 0 and their asymptotic behaviour at E = ∞. Since the
behaviour of D+(E) can be deduced from that of D−(E) ≡ D(E, l), we only need the
following results [4], which hold for M > 1:

(i) C and D are entire functions of E;
(ii) the zeros of D are all real, and if l > −1/2 then they are all positive;

(iii) the zeros of C are all real, and if −1 − M/2 < l < M/2 then they are all negative;
(iv) if M > 1 then the large-E asymptotic of D is

ln D(E, l) ∼ a0

2
(−E)µ, |E| → ∞, |arg(−E)| < π, (5.20)

where µ = (M + 1)/2M , and a0 = −�(−µ)�
(
µ + 1

2

)/√
π;

(v) at E = 0

D(E, l)|E=0 = 1√
2iπ

�

(
1 +

2l + 1

2M + 2

)
(2M + 2)

2l+1
2M+2 + 1

2 . (5.21)

(vi) the large-E asymptotic implies that D(E, l) has order17 equal to µ, which is strictly less
than one for M > 1. Thus, Hadamard’s factorization applies in its simplest form and
D(E, l) can be represented as

D(E, l) = D(0, l)

∞∏
k=1

(
1 − E

Ek

)
. (5.22)

Property (i) follows from the definition of D as a Wronskian, since all functions involved
are entire functions of E. Properties (ii) and (iii) will be proven in section 6.2, while the proof
of properties (iv) and (v) can be found in appendix B.

The relevant analytical properties of T (s) and Q+(s) are given in [30, 31]. For β2 in the
semiclassical domain:
17 Technically, the order of an entire function f (z) is defined to be equal to the lower bound of all positive numbers

B such that |f (z)| = O(e|z|B ) as |z| → ∞.
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(i) T (s, p) and Q±(s, p) are entire functions of s with an essential singularity at infinity on
the real axis.

(ii) All zeros of Q+(s, p) are real, and if 2p > −β2 they are all strictly positive.
(iii) All zeros of T (s, p) are real, and if |p| < 1/4 they are all negative.
(iv) The large-s asymptotics are

ln T (s, p) ∼ 2
√

π
�(1 − µ)

�
(

3
2 − µ

)�( 1

2µ

)2µ

(s)µ

ln Q±(s, p) ∼ a0(M + 1)�

(
1

2µ

)2µ

(−s)µ,

|s| → ∞, arg(−s) < π, (5.23)

where µ = 1/(2 − 2β2) and a0 is as defined above.
(v) If s = 0

Q+(0) = 1. (5.24)

(vi) The large-s asymptotic implies that Q±(s) has order equal to 1/(2 − 2β2), which is again
strictly less than one for β2 in the semiclassical domain and we can write

Q±(s) =
∞∏

k=1

(
1 − s

sk

)
. (5.25)

The restriction of β2 to the domain 0 < β2 < 1/2 translates to the constraints
π/4 < η < π/2 on the lattice model parameter η, and we see that the point at which the
factorized products have to be regularized coincide in the two cases. For convenience we
have only considered β2 inside the semiclassical domain; see [4, 31, 32] for discussions
on the interesting case of β2 � 1/2.

Given (5.17), properties (i)–(iii) and (vi) match the equivalent statements for T (s, p) and
Q+(s, p) with E replaced by s. Noting that µ = (M + 1)/2M = 1/(2 − 2β2), the asymptotic
(iv) and the normalizations of D− and Q+ can be made to agree by setting

s = vE, v = (2M + 2)−1/µ�

(
1

2µ

)−2

, γ∓ = D∓

(
0, 2p/β2 − 1

2

)−1

. (5.26)

The precise result is [4]

Q±(s, p)|β2 = γ∓D∓

(
s

v
,

2p

β2
− 1

2

) ∣∣∣∣
M=β−2−1,

(5.27)

T (s, p)|β2 = C
( s

v
,

2p

β2 − 1
2

) ∣∣∣∣
M=β−2−1.

(5.28)

5.3. The rôle of the fusion hierarchy

In section 3.7, another set of functional relations found in integrable models was described:
the fusion hierarchy. Now that the TQ relation has been mapped onto a Stokes relation, it is
natural to ask whether an analogue of the fusion hierarchy can also be found in the differential
equation world, and it turns out that this is indeed possible [4].

Previously we examined the expansion of y−1 in the basis {y0, y1}, but one can equally
ask about the expansion of yk in any other basis, such as {yk+r−1, yk+r}:

yk−1 = C
(r)
k yk+r−1 + C̃

(r)
k yk+r . (5.29)
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A change of basis from {yk+r−1, yk+r} to {yk−1, yk} can then be encoded in a 2 × 2 matrix C(r)
k

as (
yk−1

yk

)
= C(r)

k

(
yk+r−1

yk+r

)
, C(r)

k =
(

C
(r)
k C̃

(r)
k

C
(r−1)
k+1 C̃

(r−1)
k+1

)
. (5.30)

This matrix depends on E and l, but not x. The following properties are immediate:

C(r)
k (E, l) = C(r)

k−1(ω
2E, l), (5.31)

C(0)
k =

(
1 0
0 1

)
, C(1)

k =
(

C
(1)
k −1
1 0

)
. (5.32)

Further relations reflect the fact that the change from the basis {yk+r+n−1, yk+r+n} to
{yk+r−1, yk+r}, followed by the change from {yk+r−1, yk+r} to {yk−1, yk}, has the same effect as
accomplishing the overall change in one go:

C(r)
k C(n)

k+r = C(r+n)
k . (5.33)

(These express the consistency of the analytic continuations, and can be thought of as
monodromy relations.) The case r = 1 gives two non-trivial relations:

C
(1)
k C

(n)
k+1 − C

(n−1)
k+2 = C

(n+1)
k (5.34)

and

C
(1)
k C̃

(n)
k+1 − C̃

(n−1)
k+2 = C̃

(n+1)
k , (5.35)

which can be combined with the ‘initial conditions’ (5.32): to deduce C̃
(2)
k = −C

(1)
k , and then

the more general equality

C̃
(n)
k = −C

(n−1)
k (5.36)

follows on comparing (5.35) with (5.34). If we now set

C(n)(E) = C
(n)
0 (ω−n+1E), (5.37)

then (5.34) is equivalent to

C(E)C(n)(ωn+1E) = C(n−1)(ωn+2E) + C(n+1)(ωnE), (5.38)

and this matches the fusion relation (3.62). Since C(0)(E) = 1 = T0(E) and, from the last
section, C(1)(E) = C(E) = T1/2(vE), this establishes the basic equality

C(n)(E) = Tn/2(vE). (5.39)

To find the fusion relation (3.61), we start by taking Wronskians of (5.29) as before to
obtain

C
(r)
k = Wk−1,k+r , C̃

(r)
k = −Wk−1,k+r−1, (5.40)

from which we immediately recover (5.36), and can also deduce

C
(r)
k = −C

(−r−2)
k+r+1 . (5.41)

This relation combined with the n = −r case of (5.33), namely C(r)
k C(−r)

k+r = 1, implies that

C(r−1)(ω−1E)C(r−1)(ωE) − C(r)(E)C(r−2)(E) = 1, (5.42)

which reproduces the fusion relations (3.61), given the identification (5.39).
Finally, combining (5.39) and (5.40) we have an expression for Tn/2(vE) in terms of a

Wronskian:

Tn/2(vE) = C(n)(E) = W−1,n(ω
−n+1E). (5.43)
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Figure 17. General quantization contours involved in the ODE/IM correspondence.

This result shows that the fused transfer matrices can also be interpreted as spectral
determinants. The right-hand side of (5.43) vanishes if and only if E is such that y−1 and yn

are linearly dependent, which in turn is true if and only if the ODE has a nontrivial solution
which simultaneously decays to zero as |x| → ∞ in the sectors S−1 and Sn. This is one of
the lateral eigenvalue problems discussed in section 4.1, with the eigenvalues encoded in the
zeros of C(n). The full story is illustrated in figure 17.

Once the fused transfer matrices have been understood in this way, truncation of the fusion
hierarchy can be reinterpreted in terms of the (quasi-) periodicity (in k) that the functions yk

exhibit whenever M is rational [4]. In the simplest cases (with M rational and l(l + 1) = 0) this
periodicity arises because the solutions to the ODE live on a finite cover of C\{0}; for other
cases, the monodromy around x = 0 needs a little more care, but the story remains essentially
the same.

As a simple example, consider the Schrödinger problems with 2M integer and l(l+1) = 0.
In these cases all solutions of the ODE are single-valued functions of x, and the sectors Sn+2M+2

and Sn coincide. Thus both yn and yn+2M+2 are subdominant in Sn and must be proportional.
In fact, one can easily show from the asymptotics that yn+2M+2(x, E, l) = −yn(x,E, l), from
which we conclude from (5.43) that

C(2M)(E) = 1, C(2M+1)(E) = 0. (5.44)

Thus the set (5.42) of functional relations truncates to

C(r)(ω−1E)C(r)(ωE) = 1 +
2M−1∏
n=1

(C(n)(E))Gnr , (5.45)

perfectly matching the T-system (3.63).

5.4. The quantum Wronskians

There is one final set of functional relations to discuss: the quantum Wronskian (3.75) and its
partner relations (3.74) which express the T’s in terms of the Q’s. Recall the solutions ψ±,
defined in equation (5.7) by their behaviour at x = 0. At generic values of l, these give an
alternative basis in which to expand y(x,E, l). Using the Wronskian

W [ψ+, ψ−] = 2l + 1 (5.46)

(evaluated in the limit x → 0), and the relations D∓ = W [y,ψ±],

(2l + 1)y(x,E, l) = D−(E)ψ−(x, E) − D+(E)ψ+(x, E). (5.47)
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Note that there is a problem with this expansion at l = −1/2, which is easily understood:
at this point the two solutions ψ+ and ψ− coincide and no longer provide a basis, a fact
which is reflected in the vanishing of their Wronskian (5.46). In fact this is not the only
place where difficulties arise. So long as l lies in the right half-plane Re l > −1/2, the
solution ψ+(x, E) = ψ(x,E, l) can be proved to exist as the limit of a convergent sequence
of approximate solutions—see [159, 166, 167]. However, this does not work in the left half-
plane, which is another way to see why the second solution ψ−(x, E) = ψ(x,E,−1− l) must
initially be defined by analytic continuation. At isolated values of l in the left half-plane, poles
may arise, causing ψ− to be ill-defined. As discussed in chapter 4 of [166], these poles can
be removed by multiplying ψ− by a regularizing factor. However, this inevitably inserts extra
zeros into the Wronskian (5.46), and the regularized ψ̃− fails to be independent of ψ+ at exactly
the points where the previous ψ− had failed to exist. For the simple power-law potential x2M

that we are dealing with, the problem values of l are best identified via the iterative construction
of [159], and lead to the conclusion—see for example [4]—that {ψ+, ψ−} fails to be a basis at
the points

l + 1
2 = ±(m1 + (M + 1)m2), (5.48)

where m1 and m2 are two non-negative integers. Using (5.17), for the integrable model this
corresponds to the twist values

2p = ±(m1β
2 + m2). (5.49)

The set

2p = ±m2, (m2 = 0, 1, . . .) (5.50)

corresponds to the vanishing-points for the quantum Wronskian (see equation (3.75)) and at

2p = −β2 − m2, (m2 = 0, 1, . . .) (5.51)

there is a normalization problem for Q+(s, p) as a consequence of the appearance of a zero
level (sk = 0 for some k) [31].

The problem points (5.48) can be dealt with by a limiting procedure—[4] discusses the
first case, l = −1/2. For now, though, we will assume that l has been picked so that these
subtleties do not arise. Then the pair {ψ+, ψ−} does provide a basis for the ODE, and,
using (4.13), we define pairs of solutions ψ±

k (x, E) as

ψ±
k (x, E) = ωk/2ψ±(ω−kx, ω2kE, l), k ∈ Z. (5.52)

These allow the rotated functions yk to be expanded as in (5.47):

(2l + 1)yk(x, E, l) = D−(ω2kE)ψ−
k (x, E) + D+(ω

2kE)ψ+
k (x, E). (5.53)

The Wronskians of these solutions are very simple:

W
[
ψ+

k , ψ+
p

] = W
[
ψ−

k , ψ−
p

] = 0, (5.54)

W
[
ψ−

k , ψ+
p

] = (2l + 1)ω(k−p)(l+1/2). (5.55)

The fundamental quantum Wronskian is now almost immediate: in our normalizations,
W [y−1, y0] = 1, and substituting the expansion (5.53) into this formula and using bilinearity
of the Wronskian yields

(2l + 1) = ω−(l+1/2)D−(ω−1E)D+(ωE) − ωl+1/2D−(ωE)D+(ω
−1E). (5.56)

The fused Wronskians are equally straightforward. Taking the Wronskian of y−1 and yn, again
using the expansion (5.53), shifting E to ω−n+1E and using relation (5.43) for C(n) shows that

(2l + 1)C(n)(E) = ω−(n+1)(l+1/2)D−(ω−n−1E)D+(ω
n+1E)

−ω(n+1)(l+1/2)D−(ωn+1E)D+(ω
−n−1E), (5.57)

which is precisely (3.74).
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Next we evaluate (5.57) at l = 0 and n = M for integer M, and replace C(M) with TM/2

to find
i

2
TM/2(E) = D−(−E, 0)D+(−E, 0) ≡ D(−E). (5.58)

The final equality follows from recalling that D−(E, 0) and D+(E, 0) are the even and odd
subdeterminants for the spectral problem defined on the full real axis. This, up to a factor of
i/2 arising from our normalization of D(0), is precisely the original result conjectured in [1].

In fact, the quantum Wronksian relation (5.56) was the initial source of the ODE/IM
correspondence [1]. As a bridge between the ODE and IM worlds, it has some advantages
over the ‘TQ’ approach we have stressed in the foregoing. In particular, it allows for a complete
proof of the correspondence [2].

5.5. Numerical techniques

One of the byproducts of the ODE/IM correspondence was the realization that energy levels
for Schrödinger problems can be calculated using nonlinear integral equations [1] of either
TBA type or an alternative type known as the Destri de Vega or Klümper–Batchelor–Pearce
equations (or simply NLIEs). In appendix D we derive the TBA equations and NLIEs
associated with the spectral problems above, and explain how to obtain the spectrum by
solving these equations iteratively.

These methods of solving such eigenvalue problems appear to be new, though iterative
solution methods based on functional relations for spectral determinants had previously been
employed by Voros [21], in work which was an important input to the initial observation of
the ODE/IM correspondence in [1]. Numerically, the method is rather efficient—integral
equations tend to be easier to solve than differential ones, and spectral determinants encode
all the eigenvalues at once.

5.6. The full dictionary

All good correspondences need a dictionary, and the table below summarizes the mapping
between objects seen by the integrable model and the differential equation.

Integrable model Schrödinger equation

Spectral parameter ↔ Energy
Anisotropy ↔ Degree of potential
Twist parameter ↔ Angular momentum
(Fused) transfer matrices ↔ Lateral spectral problems defined at |x| = ∞
Q operators ↔ Radial spectral problems linking |x| = ∞ and |x| = 0
Truncation of the fusion hierarchy ↔ Solutions on finite covers of C\{0}

Armed with the dictionary, the horizontal axis of figure 2 can be annotated to indicate which
integrable models correspond to the various values of M in the Bender–Boettcher problem.
Thus for M = 1

2 , 1, 3
2 , 2 and 3, the relevant integrable models are the N = 2 SUSY point

of the sine-Gordon model, the free-fermion point, the Yang–Lee model, Z4 parafermions
and the 4-state Potts model respectively. It is amusing that the x3 potential is related to the
correspondence to the Yang–Lee model (or, strictly speaking, to the sine-Gordon model at
the value of the coupling which allows for a reduction to Yang–Lee), thus returning by a
very indirect route to the original thought of Bessis and Zinn-Justin. Note that while the
various results discussed here are derived for M > 1, the ‘Airy case’ (M = 1/2, l = 0) has
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already been studied in [168], and has been shown to be consistent with integrable field theory
predictions [1, 169].

We finish this section with the table below, which records the notation used for the related
objects appearing in the six vertex model, the continuum integrable model and the differential
equation picture.

Six vertex Integrable Schrödinger
model model equation

ν s E
η β M
φ φ l
t (m) Tm C(2m)

q0(ν, ±φ) Q± D∓

6. Applications and generalizations

The correspondence between ordinary differential equations and integrable models is
intriguing, but is it good for anything? One answer comes from the fact that the properties of
ordinary differential equations and their solutions are rather better understood than those of the
T and Q functions from integrable quantum field theory. The correspondence therefore allows a
number of conjectured properties of these functions to be proven for the first time—analyticity,
duality . . . [2, 153–155, 170–172].

On the other hand, ideas from the theory of integrable models have led to new insights into
the spectral properties of a number of quantum-mechanical problems. This section begins with
some examples of this aspect, starting with the reality properties in PT -symmetric quantum
mechanics that were described back in section 2. First we sketch how the most general class
of problems discussed there can be linked with integrable models.

6.1. Inhomogeneous potentials

A key feature of the proof of the TQ relation in section 4 was the fact that the differential
equation mapped to itself under the ‘Sibuya’ variable change x �→ ω−1x,E �→ ω2E, where
ω = exp(π i/(M +1)). In turn, this relied on the ‘potential’ V (x) = x2M being invariant under
V (x) �→ ω−2V (ω−1x). A natural generalization, first observed in [7] and further explored in
[11], is to add a term which is exactly anti-invariant under the same transformation. This leads
to the consideration of the inhomogeneous potential V (x) = x2M + αxM−1 and the ordinary
differential equation[

− d2

dx2
+ x2M + αxM−1 +

l(l + 1)

x2

]
�(x) = E�(x), (6.1)

where α is a free parameter. Again the radial spectral problem asks for those values of E
admitting solutions which vanish as x → +∞, and behave as xl+1 as x → 0. With the
inclusion of the additional term the subdominant large-x asymptotic, defining the fundamental
Sibuya solution, becomes

y(x,E, α, l) ∼ x−M/2−α/2

√
2i

exp

(
− xM+1

M + 1

)
. (6.2)
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For integer k we then generate a set of solutions to (6.1)

yk(x,E, α, l) = ωk/2+kα/2y(ω−kx, ω2kE, ω(M+1)kα, l), ω = e
π i

M+1 , (6.3)

with each pair {yk, yk+1} forming a basis of solutions. Therefore, just as before, there must be
a Stokes relation of the form

C(E, α, l)y0(x, E, α, l) = y−1(x, E, α, l) + y1(x, E, α, l), (6.4)

with Stokes multiplier C(E, α, l)

C(E, α, l) = W [y−1, y1]/W [y0, y1] = W [y−1, y1]. (6.5)

Since ωM+1 = −1, the only values of α to arise in the set of functions yk(x,E, α, l), related
to (6.4), are α itself, and −α. This makes it convenient to define

C(±)(E) := C(E,±α, l), y(±)(x, E) := y(x,E,±α, l) (6.6)

after which taking (6.4) at positive and negative α implies the pair of coupled equations

C(+)(E)y(+)(x, E) = ω−(1+α)/2y(−)(ωx, ω2ME) + ω(1+α)/2y(−)(ω−1x, ω−2ME), (6.7)

C(−)(E)y(−)(x, E) = ω−(1−α)/2y(+)(ωx, ω2ME) + ω(1−α)/2y(+)(ω−1x, ω−2ME). (6.8)

To remove the x-dependence we project onto solutions ψ±(x, E, α, l) which are defined at the
origin by

ψ(x, α, l) = ψ+(x, α, l) ∼ xl+1 + · · · , x → 0 (6.9)

and ψ−(x, α, l) = ψ(x, α,−1 − l). The subscripts ± should not be confused with the
bracketed superscripts (±), which are used to differentiate positive and negative values of α.
We set

D(E, α, l) = W [y,ψ+](E, α, l). (6.10)

Then, reasoning as before, the Stokes relations (6.7) and (6.8) imply

C(+)(E)D(+)(E) = ω−(2l+1+α)/2D(−)(ω2ME) + ω(2l+1+α)/2D(−)(ω−2ME), (6.11)

C(−)(E)D(−)(E) = ω−(2l+1−α)/2D(+)(ω2ME) + ω(2l+1−α)/2D(+)(ω−2ME), (6.12)

where D(±)(E) = D(E,±α, l) are easily identified with the spectral determinants for the
radial problems (6.1) taken at ±α. These equations entwine the spectral problem at +α with
that at −α, and reduce to two copies of the six-vertex TQ relation for α = 0. At general α [7]
they match equations satisfied by the T- and Q-operators for the 3-state Perk-Schultz lattice
model [173–175], a model with Uq(ĝl(2|1)) symmetry.

6.2. PT -symmetry and reality proofs

For maximal generality, we consider the three-parameter family of Hamiltonians HM,α,l and
look for solutions of the corresponding Schrödinger equation[

− d2

dx2
− (ix)2M − α(ix)M−1 +

l(l + 1)

x2

]
ψk(x) = λkψk(x) (6.13)

that decay simultaneously at both ends of a contour C which can be taken to be the real axis if
M < 2, suitably distorted to pass below the origin if l(l + 1) �= 0. For larger values of M the
contour should be further distorted so as to remain in the pair of Stokes sectors which includes
the real axis at M = 1, as illustrated in figure 12 of section 4. We shall prove
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Theorem 1. The spectrum of HM,α,l is

• real for M > 1 and α < M + 1 + |2l + 1|;
• positive for M > 1 and α < M + 1 − |2l + 1|.

This result includes the cases considered in section 2.
First we remove the factors of i by setting �(x) = ψ(x/i), so that the Schrödinger

problem becomes[
− d2

dx2
+ x2M + αxM−1 +

l(l + 1)

x2

]
�k(x) = −λk�k(x), �k(x) ∈ L2(iC), (6.14)

and has the same form as (6.1) with E = −λk , though with different boundary conditions: to
qualify as an eigenfunction, � must decay as |x| → ∞ along the contour iC. However, it is an
easy generalization of the discussion in section 5 that the function C(−λ, α, l) defined in (6.5)
is the spectral determinant associated with the spectral problem (6.14). This identification will
allow us to prove the theorem using techniques inspired by the Bethe ansatz.

We start from equation (6.11):

C(+)(E)D(+)(E) = ω−(2l+1+α)/2D(−)(ω−2E) + ω(2l+1+α)/2D(−)(ω2E), (6.15)

and define the zeros of C(+)(E) = C(E, α, l) to be the set {−λk}, and the zeros of D(±)(E) to
be the set

{
E

(±)
k

}
. Setting E = E

(±)
k in (6.15) leads back to a (coupled) set of Bethe ansatz

equations for the zeros of D(±), much as before. However, we can also investigate the effect of
setting E = −λk . The left-hand side of (6.15) is again zero, so the equation can be rearranged
to read

D(−)(ω2λk)/D
(−)(ω−2λk) = −ω−2l−1−α. (6.16)

For M > 1, WKB estimates show that the function D(−)(E) has order less than one, so that it
can be written as a simple product over its zeros, as in (5.22) for the homogeneous potentials.
Using this factorized form gives the following set of constraints on the λk’s:

∞∏
n=1

(
E(−)

n + ω2λk

E
(−)
n + ω−2λk

)
= −ω−2l−1−α, k = 1, 2, . . . . (6.17)

Note what has been achieved here—the little-understood set of numbers {λk}, eigenvalues of
a non-Hermitian eigenvalue problem, are being constrained by the much better understood set{
E(−)

n

}
. Since the original eigenproblem (6.13) is invariant under l → −1 − l, we can assume

l � −1/2 without any loss of generality. Then each E(−)
n is an eigenvalue of an Hermitian

operator HM,−α,l , and hence is real. Furthermore a Langer transformation [176] (see also
[2, 4]) shows that the E(−)

n solve a generalized eigenproblem with an everywhere-positive
‘potential’, and so are all positive, for α < 1 + 2l. This can be sharpened by considering the
value of D(−)(E)|E=0, found by an easy generalization of the result obtained in appendix B
for the cases with α = 0. From

D(±)(E)|E=0 =
√

2

i

(
M + 1

2

) 2l+1∓α
2M+2 + 1

2 �
(

2l+1
M+1 + 1

)
�
(

2l+1±α
2M+2 + 1

2

) (6.18)

we see that D(−)(E)|E=0 first vanishes when α = M + 2l + 2. Until this point is reached, no
eigenvalue E(−)

n can have passed the origin, and all must be positive. (It might be worried that
negative eigenvalues could appear from E = −∞, but this possibility can be ruled out by a
consideration of the Langer-transformed version of the equation.)
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Taking the modulus2 of (6.17), using the reality of the E
(−)
k , and writing the eigenvalues

of (6.13) as λk = |λk| exp(iδk), we have
∞∏

n=1

( (
E(−)

n

)2
+ |λk|2 + 2E(−)

n |λk| cos
(

2π
M+1 + δk

)(
E

(−)
n

)2
+ |λk|2 + 2E

(−)
n |λk| cos

(
2π

M+1 − δk

)
)

= 1. (6.19)

For α < M + 2l + 2, all the E(−)
n are positive, and each single term in the product on the LHS

of (6.19) is either greater than, smaller than, or equal to one depending only on the relative
values of the cosine terms in the numerator and denominator. These are independent of the
index n. Therefore the only possibility to match the RHS is for each term in the product to be
individually equal to one, which for λk �= 0 requires

cos

(
2π

M + 1
+ δk

)
= cos

(
2π

M + 1
− δk

)
or sin

(
2π

M + 1

)
sin(δk) = 0. (6.20)

Since M > 1, this latter condition implies

δk = mπ, m ∈ Z (6.21)

and this establishes the reality of the eigenvalues of (6.13) for M > 1 and α < M + 2l + 2 or,
relaxing the condition on l, α < M + 1 + |2l + 1|.

The plots and discussion in section 2 indicate that most of the λk become complex as M
falls below 1, at least for α = 0. We now see that this coincides with the point at which the
order of D(−)(E) is greater than 1, the factorized form of D(−)(E) provided by Hadamard’s
theorem no longer has such a simple form, and the proof just given breaks down.

The borderline case M = 1 is the simple harmonic oscillator, exactly solvable for all l
and α in terms of confluent hypergeometric functions. The case α = 0 is discussed in detail
in appendix B.1; since a nonzero value of α can be absorbed in a simple shift of E, it is easily
seen that the correctly normalized solution for the general case is

y(x,E, α, l) = 1√
2i

xl+1 e−x2/2U

(
1

2

(
l +

3

2

)
− E − α

4
, l +

3

2
, x2

)
, (6.22)

and that

C(E, α, l)|M=1 = 2π

�
(

1
2 + 2l+1+E−α

4

)
�
(

1
2 − 2l+1−E+α

4

) . (6.23)

Thus the eigenvalues of (6.13) for M = 1 are λk = 4k − 2 − α ± (2l + 1), k = 1, 2, . . . . They
are all real for all real values of α and l, and are all positive for α < 2 − |2l + 1|.

To discuss positivity at general values of M > 1, we can continue in M, α and l away from
a point in the region {M = 1, α < 2−|2l + 1|}. So long as α remains less than M + 1 + |2l + 1|,
all eigenvalues will be confined to the real axis during this process, and the first passage of
an eigenvalue from positive to negative values will be signalled by the presence of a zero in
C(−λ, α, l) at λ = 0. Using (6.18) we have

C(E, α, l)|E=0 =
(

M + 1

2

) α
M+1 2π

�
(

1
2 + 2l+1−α

2M+2

)
�
(

1
2 − 2l+1+α

2M+2

) , (6.24)

and so the first zero arrives at E = −λ = 0 when α = M + 1 − |2l + 1|. Thus for all
α < M + 1 − |2l + 1|, the spectrum is entirely positive, as claimed.

Referring to the regions A,B,C and D shown on figure 18, the proof establishes reality
for (α, l) ∈ B ∪ C ∪ D, and positivity for (α, l) ∈ D. This doesn’t mean that the spectrum
immediately acquires complex elements when the region A is entered, though. In [12] the
shape of the domain of unreality was investigated in more detail, for the special case M = 3.
(This value was chosen because the PT -symmetric problem is there equivalent to a radial
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Figure 18. The approximate ‘phase diagram’ at fixed M. The proof in the text shows that the
spectrum is entirely real in regions B, C and D, and positive in region D.
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Figure 19. The domain of unreality of H3,α,ρ , where ρ = √
3(2l + 1). Also shown are segments

of the lines along which the problem has a protected zero-energy level.

problem, making the numerics a little easier to handle. This equivalence will be explained in
the following subsection.)

Figure 19 repeats the plot from [12] already shown in the prelude, this time superimposing
the boundaries of regions A,B,C and D. The full domain of unreality (the interior of the
cusped line), only touches the borders of region A at isolated points. There is also a small,
approximately triangular region inside A near ρ = 0 within which the spectrum is entirely
real and positive, despite being outside region D.

In fact, the condition α < M + 1 + |2l + 1|, which arose as a technical point in the
proof, has a rather more physical explanation [12]. Along the lines α = M + 1 ± (2l + 1) the
problem can be reformulated in terms of a PT -symmetric version of supersymmetric quantum
mechanics. On the supersymmetric lines the model has a protected zero-energy state which
permits eigenvalues to become degenerate and pair off into complex conjugate pairs. For
M = 3 this occurs at the points where the cusped line touches the borders of A on figure 19.



R248 Topical Review

–30 –20 –10 0 10 20 30

ρ

0

10

20

α

30

Figure 20. An expanded view of figure 19, showing the frontiers of the regions with zero, two,
four and six complex levels.

The idea of a protected zero-energy level also leads to a partial explanation for the pattern
of cusps seen in figure 19. In addition to the supersymmetric lines α = M + 1 ± (2l + 1), there
is a protected zero-energy state along all line segments shown in figure 19: this follows from
(6.24), which shows that C(E, α, l) vanishes whenever α = (M +1)(2n+1)± (2l +1), n = 0,

1, . . . . For n � 1 these are precisely the lines on which cusps would be expected to be found,
as follows from a consideration of the mergings of the relevant levels, and the fact—special
to M = 3—that the merging levels enjoy an E → −E symmetry.

The cusped line marking the frontier of the zone of reality is in fact only the first of
infinitely many such lines—figure 20 shows some further lines across which pairs of energy
levels become complex.

Finally, we remark that Shin has extended the Bethe-ansatz-inspired ideas of the main
proof given above to establish spectral reality for a somewhat wider class of non-Hermitian
potentials [89, 92].

6.3. Curiosities at M = 3

The correspondence with Bethe ansatz systems can also reveal unexpected relationships
between the spectral properties of apparently very different problems. One set of examples,
obtained in [11], connects quantum-mechanical problems via a third-order equation. Consider
the radial problem studied in section 6.1 at M = 3. For later convenience, we also swap l for
the variable ρ := √

3(2l + 1) already used in figure 19, so that the differential equation is[
− d2

dx2
+ x6 + αx2 +

ρ2 − 3

12x2

]
�(x) = E�(x). (6.25)

The spectrum is encoded in the spectral determinant D(E, α, l)|M=3.
On the other hand, we can consider a third-order ordinary differential equation

[D(g2 − 2)D(g1 − 1)D(g0) + x3]φ(x) = 3
√

3

4
Eφ(x), (6.26)
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ρ
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(a) α �→ α (b) α �→ α (c) α �→ αcba

Figure 21. The three mappings involved in the spectral equivalences.

where D(g) ≡ (
d

dx
− g

x

)
. Third-order equations of this type are generally associated with

SU(3)-related Bethe ansatz equations, as shown in [5, 8], but for the particular ‘potential’ x3

that appears in (6.26), they collapse onto SU(2)-type equations [11]. With the choice

g0 = 1 + (α +
√

3ρ)/4, g1 = 1 + α/2, g2 = 1 + (α −
√

3ρ)/4, (6.27)

the collapse is onto the same set of equations as govern the problem (6.25). This leads to
a rather remarkable spectral equivalence between pairs of second- and third-order ordinary
differential equations. Furthermore, the third-order equation is symmetrical in {g0, g1, g2}, a
feature which is completely hidden in the original second-order equation. By playing with this
symmetry, some novel spectral equivalences can be established between different second-order
radial problems, and also between these and certain lateral problems [11]. The parametrization
in terms of α and ρ allows these relations to be expressed in a compact way in terms of certain

2 × 2 matrices in the Weyl group of SU(3) [100]. With α = (αρ ), let

Radial(α) = Spect ((6.25) with radial boundary conditions)

Lateral(α) = Spect ((6.25) with lateral boundary conditions)

and define matrices L, T and LT by

L =
(

1 0
0 −1

)
, T = 1

2

(
−1

√
3√

3 1

)
, LT = 1

2

(
−1

√
3

−√
3 −1

)
. (6.28)

The reflections L and T together generate the Weyl group of SU(3), with their product LT

being an anticlockwise rotation in the (ρ, α) plane by 2π/3. The three mappings are illustrated
in figure 21. With this notation in place, three simply stated spectral equivalences hold:

(a) Radial(α) = Radial(Tα)

(b) Lateral(α) = Lateral(Lα)

(c) Lateral(α) = Radial(LTα).

Of these, the second is trivial—it just encodes the l → −1 − l symmetry of the lateral
problem—but the other two are not. The third, (c), gives a direct insight into spectral reality
for M = 3: it demonstrates that the PT -symmetric problem for this case is equivalent to
an explicitly Hermitian problem. Note that the domain of unreality for the PT -symmetric
situation—shown in figure 19 above the wavy line—is rotated under (c) into a region of negative
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ρ, where l is sufficiently negative that the radial problem Radial(LTα) is also non-Hermitian
and so no contradiction with unreality arises. (Interestingly, there are similar equivalences
[110, 177, 178] for a subset of the non-Hermitian M = 2 problems, though the methods of
proof in those papers are very different.)

In the (α, ρ) coordinates adapted to M = 3 the lines with a protected zero energy level
shown on figure 19 are α = 4J ± ρ/

√
3, J = 1, 3, 5, . . . , and they have an extra significance

[12]: they correspond to points at which the model exhibits a PT -symmetric version of the
quasi-exact solvability discussed in [179, 180], with an odd number J of ‘QES’ eigenfunctions
and eigenvalues which can be found algebraically. In fact, a further spectral equivalence from
[11], related to a higher order supersymmetry [11, 181, 182], can be used to show that if
α lies on the line α = 4J + ρ/

√
3, with J an integer, then the non-QES part of the PT -

symmetric spectrum Lateral(α) is the same as the full PT -symmetric spectrum Lateral(Tα).
(Likewise, if α lies on α = 4J − ρ/

√
3 then there is a mapping of the non-QES spectrum

onto Lateral(LTLα).) If α is inside the region A, so that some levels of Lateral(α) might
be complex, then, looking at figure 21a, Tα must be outside this region. Thus the non-QES
part of Lateral(α) is real, and so the levels which become complex as α moves into region A

through QES values must lie in the solvable part of the spectrum [12]. This complements a
similar, but as yet unproven, conjecture concerning quartic QES potentials [183].

6.4. Further generalizations

The ODE/IM correspondence introduced here for SU(2) Bethe ansatz systems has been
extended to a number of other integrable models and ordinary differential equations. To
finish, we present a very schematic summary of the integrable models and differential equations
involved in correspondences to date. The cited references should be consulted for more details
of the models and parameters involved in each case.

• Six-vertex model, su(2) spin- 1
2 XXZ quantum chains and the perturbed boundary sine-

Gordon model [1–4]. As already described, the ground state of the six-vertex model is
related to the spectral properties of the ordinary differential equation[

− d2

dx2
+ x2M +

l(l + 1)

x2
− E

]
	(x) = 0. (6.29)

This correspondence has been generalized [14] to map the excited states of the integrable
model to the following differential equations:[

− d2

dx2
+ x2M +

l(l + 1)

x2
− 2

d2

dx2

L∑
k=1

ln(x2M+2 − zk) − E

]
	(x) = 0, (6.30)

where the constants {zk} satisfy

L∑
j=1
j �=k

zk

(
z2
k + (M + 3)(2M + 1)zkzj + M(2M + 1)z2

j

)
(zk − zj )3

− Mzk

4(M + 1)
+ � = 0, (6.31)

and

� = (2l + 1)2 − 4M2

16(M + 1)
. (6.32)

These equations were also obtained in [184]. Very recently, they and the simpler equation
for the ground state have been interpreted as special cases of Langlands duality [185].
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• Perk–Schultz models and the perturbed hairpin model of boundary interaction [7, 11,
186]. Adding an inhomogeneous term to (6.29) gives the ordinary differential equation
discussed in section 6.1:[

− d2

dx2
+ x2M + αxM−1 +

l(l + 1)

x2
− E

]
	(x) = 0. (6.33)

Via a change of variables this is equivalently[
− d2

dx2
− p2 + 2qκex + κ2(e2x + e−nx)

]
	(x) = 0, (6.34)

the form that was used in [186].
• Spin-j su(2) quantum chains and the boundary parafermionic sinh-Gordon model

[187–189].
The higher spin su(2) chains are found by a process known as fusion, and their ground
state Bethe ansatz roots group into characteristic ‘strings’ in the imaginary direction of
length 2j . This behaviour is captured by generalized eigenvalue problems of the form[

− d2

dx2
+ (x2M − E)2j +

l(l + 1)

x2

]
	(x) = 0 (6.35)

or equivalently [
− d2

dx2
+ κ2(e− bx

Q + e
x

bQ )2j − ξ 2

]
	(x) = 0, (6.36)

where Q = b + b−1. The formation of strings for this equation is discussed in [19].
• su(n) vertex models [5, 6, 8, 19, 170, 187]:

To encode Bethe ansatz systems related to su(n) with n > 2, it turns out to be necessary
to go to higher order ordinary differential equations:

[(−1)nDn(g) − PK(x,E)]	(x) = 0, (6.37)

where g = {g0, g1, . . . gn−1} is a collection of ‘twist’ parameters,

Dn(g) = D(gn−1 − (n − 1)) . . . D(g1 − 1)D(g0),D(g) =
(

d

dx
− g

x

)
(6.38)

and

PK(x,E) = (xhM/K − E)K (6.39)

with h = n + 1, the dual Coxeter number of su(n), and the integer K gives the degree of
fusion of the vertex model.

• Finite spin-jXXZ quantum chains at � = ± 1
2 [15].[

− d2

dx2
− N(N + 1)

cosh2 x
+

M(M + 1)

sinh2 x
+ σ 2

]
	(x) = 0, (6.40)

with σ = (m + 1)/(2j + 2).
• Coqblin–Schrieffer model [171].[(

−i
d

dx
+ h1

)
. . .

(
−i

d

dx
+ hn

)
− enθ exx

]
	(x) = 0. (6.41)

Note that, after a variable change, this is a particular case of (6.37).
• Circular Brane [154].[

− d2

dy2
+ h2ey + κ2 exp(ey)

]
	(y) = 0. (6.42)
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• Paperclip models [155, 172].[
− d2

dx2
− p2 ex

1 + ex
−
(

q2 − 1

4

)
ex

(1 + ex)2
+ κ2(1 + ex)n

]
	(x) = 0. (6.43)

Note, setting x = y− log n and taking the limit n → ∞ reduces this to (6.42), the circular
brane. The paperclip models and the perturbed boundary hairpins of [186] both exhibit
the conformal hairpin boundary condition in their ultraviolet limits, but the perturbations
are different.

• Finite spin- 1
2 XYZ quantum chain (off-critical deformation of the � = − 1

2XXZ model)
[17].

6q
∂

∂q
	(x, q) =

[
− ∂2

∂x2
+ 9n(n + 1)℘(3x|q3) + c(q, n)

]
	(x, q), (6.44)

where ℘ is the Weierstrass elliptic function, q = eiπτ , τ is the modular parameter,

c(q, n) = −3n(n + 1)
ϑ ′′′

1 (0, q3)

ϑ ′
1(0, q3)

, (6.45)

and ϑ1 is the elliptic theta function.
• so(2n) vertex models [19]:[

Dn(g†)

(
d

dx

)−1

Dn(g) −
√

PK(x,E)

(
d

dx

)√
PK(x,E)

]
	(x,E, g) = 0, (6.46)

where g = {g0, g1 . . . gn−1} is a set of twist parameters as for su(n), g† = {n−1−g0, n−
1 − g1, . . . , n − 1 − gn−1}, and the generalized potential term PK(x,E) is as in (6.39),
but with h = 2n − 2.

• so(2n + 1) vertex models [19].[
Dn(g†)Dn(g) +

√
PK(x,E)

(
d

dx

)√
PK(x,E)

]
	(x,E, g) = 0, (6.47)

where PK(x,E) is as in (6.39) with h = 2n − 1.
• sp(2n) vertex models [19].[

Dn(g†)

(
d

dx

)
Dn(g) − PK(x,E)

(
d

dx

)−1

PK(x,E)

]
ψ(x,E, g) = 0, (6.48)

where PK(x,E) is as in (6.39) with h = n + 1.

7. Conclusions

The main conclusion of this review can be stated very simply: it is that the T and Q operators
that arise in certain integrable quantum field theories encode spectral data. This gives a novel
perspective on the Bethe ansatz, and also a new way to treat spectral problems via the solution
of nonlinear integral equations. As an application, we have shown how Bethe ansatz ideas
led to a proof of a reality property in PT -symmetric quantum mechanics. Techniques from
integrability also shed light on the way that reality is lost [16]. The correspondence has proved
useful in the converse direction as well [153–155, 171].

There are many further problems to be explored, and here we list just a few. First, it will
be interesting to find out how many other BA systems can be brought into the correspondence,
beyond those listed in section 6.4.
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Second, most of the correspondences established to date have concerned massless
integrable lattice models, in a field theory limit where the number of sites, and of Bethe
ansatz roots, tends to infinity. The first match to a finite-lattice system has been reported in
[15], linking the Pöschl–Teller (Heun) equation in complex domain and spin-L−2

2 XXZ spin
chains at special choices of �. It would be of interest to extend this result to other models.

Third, while we have concentrated on describing the correspondence for the ground
state eigenvalues of the T and Q operators, a spectral interpretation for the excited state
eigenvalues t1(ν), t2(ν) and so on has now been found for the massless SU(2)-related system
in the continuum limit [14]. The complicated distributions of Bethe roots is reflected in the
significantly more complicated nature of the Schrödinger problems. In particular the potentials
are no longer real, even for the radial problems. Since all eigenvalues satisfy the same
functional relations as for the ground state, it is expected that a correspondence for the excited
state eigenvalues of all models should exist.

Fourth, it would be of interest to extend the correspondence to encompass massive
integrable models, a first step towards this goal having very recently been made in [17].

Finally, we should admit that our observations remain at a rather formal and mathematical
level. It is natural to ask whether there is a more physical explanation for the correspondence,
but perhaps this question will be easier to answer once some of the other open problems have
been resolved.
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Appendix A. The algebraic Bethe ansatz

In this appendix, we fill in some details of the Bethe ansatz for the six-vertex model. The
technique we describe is called the algebraic Bethe ansatz, an elegant formulation developed
by the ‘Leningrad school’, which reveals the rôle of the Yang–Baxter equation in a particularly
transparent way. Our presentation borrows heavily from [127], fixing one or two typos; other
useful references are [190] and [191]. To keep the discussion self-contained, we begin by
recalling some of the definitions from section 3.

The local Boltzmann weights for the model are parametrized in terms of the spectral
parameter ν and the anisotropy η as

a(ν, η) = sin(η + iν) = W

[
→↑

↑→
]

= W

[
←↓

↓←
]

; (A.1)

b(ν, η) = sin(η − iν) = W

[
→↓

↓→
]

= W

[
←↑

↑←
]

; (A.2)

c(ν, η) = sin(2η) = W

[
→↑

↓←
]

= W

[
←↓

↑→
]

, (A.3)

representing the weights W as in figure A1.
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Figure A1. The local Boltzmann weights.
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Figure A2. The monodromy matrix.

From these local weights, a 2N × 2N transfer matrix Tα′
α (ν) is constructed:

Tα′
α (ν) =

∑
{βi }

W

[
β1

α′
1

α1
β2

]
(ν)W

[
β2

α′
2

α2
β3

]
(ν)W

[
β3

α′
3

α3
β4

]
(ν) · · · W

[
βN

α′
N

αN

β1

]
(ν), (A.4)

where α = (α1, α2, . . . , αN) and α′ = (α′
1, α

′
2, . . . , α

′
N) are multi-indices.

The task of the Bethe ansatz is to find eigenvectors 	 and eigenvalues t of T, so that∑
α′

Tα′
α 	α′ = t	α. (A.5)

As mentioned in section 3, the first step is to make a well-informed guess as to the form
of a putative eigenvector. The algebraic Bethe ansatz makes this guess with the help of an
additional piece of machinery, the monodromy matrix T :

T α′
α (ν)ab =

∑
{βi }

W

[
a
α′

1

α1
β2

]
(ν)W

[
β2

α′
2

α2
β3

]
(ν)W

[
β3

α′
3

α3
β4

]
(ν) . . . W

[
βN

α′
N

αN

b

]
(ν). (A.6)

The definition of Tab differs from that of T in the omission of the sum over one of the horizontal
spins, β1. Of course, T can immediately be recovered from Tab, simply by performing this
sum:

T(ν) =
∑

a

T (ν)aa = T (ν)→→ + T (ν)←←. (A.7)

However, it turns out that important data are also hidden in the off-diagonal elements of T .
As for the transfer matrix, illustrated in figure 8 of section 3, the definition T is most easily
digested with the aid of a picture, figure A2, where in the second line we used the double lines
as a shorthand for the entire collections of lines carrying the multi-indices α and α′.

For convenience, we write the components of T as

T (ν)ab =
(
T (ν)→→ T (ν)→←
T (ν)←→ T (ν)←←

)
=
(

A(ν) B(ν)

C(ν) D(ν)

)
(A.8)
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so that

T(ν) = A(ν) + D(ν), (A.9)

and, in pictures,

A(ν) = B(ν) =

C(ν) = D(ν) =
(A.10)

As matrices acting on 2N -dimensional vectors, A,B,C and D inherit an important property
from the microscopic Boltzmann weights by virtue of the ice rule, which preserves the total
flux of arrows through each vertex and hence through each collection of vertices. If we define
S to be the total number of up arrows minus the total number of down arrows (the spin), then
A and D act on vectors with a definite value of S to give vectors with the same value, while B
decreases S by 2, and C increases it by 2.

We now come to a key property of the Boltzmann weights of the six-vertex model, a
sufficient condition for integrability. There exists a collection of numbers Rab

cd (ν), making up
the so-called R matrix and related to the Boltzmann weights via R(ν) = W(ν − iη), such that

Rc′c
aa′(ν − ν ′)W

[
c

δ

α
b

]
(ν)W

[
c′ α′

δ
b′
]
(ν ′) = W

[
a
δ

α
c

]
(ν ′)W

[
a′ α′

δ
c′
]
(ν)Rb′b

cc′ (ν − ν ′). (A.11)

This, a version of the famous Yang–Baxter relation, ‘intertwines’ the local Boltzmann weights
at spectral parameters ν and ν ′. It is best handled diagrammatically, representing Rcd

ab as in
figure A3. The perhaps-awkward, but standard, placing of the indices reflects the interpretation
of R as a matrix acting on the tensor product V1 ⊗V2, where V1 and V2 are the two-dimensional
vector spaces, spanned by → and ←, that are seen by the indices c and d respectively. The
resulting pictorial representation of the intertwining relation is shown in figure A4. Apart from
a shift in the spectral parameter, the entries of the R matrix are just the original Boltzmann
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Figure A5. Commuting the monodromy matrices.

weights, so in particular they respect the ice rule and the flux of arrows through the ‘R’ vertex
is conserved. Explicitly, the non-zero entries are

R→→
→→(ν) = R←←

←←(ν) = ν = ν = a(ν − iη, η) = sin(2η + iν)

R←→
←→(ν) = R→←

→←(ν) = ν = ν = b(ν − iη, η) = − sin(iν)

R→←
←→(ν) = R←→

→←(ν) = ν = ν = c(ν − iη, η) = sin(2η).

(A.12)

It is also useful to write Rcd
ab(ν) as a 4×4 matrix, with the rows indexed by ab and the columns

by cd, and both pairs of indices running →→,→←,←→,←←:

Rcd
ab(ν) =


sin(2η + iν) 0 0 0

0 − sin(iν) sin(2η) 0
0 sin(2η) − sin(iν) 0
0 0 0 sin(2η + iν)

 . (A.13)

This notation makes it easy to check the identity∑
e,f

R
ef

ab(ν)Rcd
ef (−ν) = sin(2η + iν) sin(2η − iν)δc

aδ
d
b (A.14)

which will be used shortly. (In the parallel universe of integrable quantum field theory, this is
related to a property called ‘unitarity’.)

Once the local intertwining relation is known, it is a simple matter to chain together N
such equalities to find an analogous relation for the monodromy matrix. This is illustrated in
figure A5.

In equations, with sums on repeated indices

Rc′c
aa′(ν − ν ′)

(
T δ

α

)
cb

(ν)
(
T α′

δ

)
c′b′(ν

′) = (T δ
α

)
ac

(ν ′)
(
T α′

δ

)
a′c′(ν)Rb′b

cc′(ν − ν ′). (A.15)

It is usually convenient to leave the fact that each component of T is itself a matrix implicit,
so that this becomes

Rc′c
aa′(ν − ν ′)Tcb(ν)Tc′b′(ν ′) = Tac(ν

′)Ta′c′(ν)Rb′b
cc′(ν − ν ′). (A.16)

Because of the way we have set things up, the ordering of matrices right to left in this equation
corresponds to the ordering top to bottom of monodromy matrices in figure A5.
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Two important consequences now follow. First, multiplying both sides by Rdd ′
b′b (ν ′ − ν),

summing on b and b′, taking traces on a, d and on a′, d ′, and then finally using the cyclic
property of the trace and (A.14), it can be seen that the transfer matrices at different values of
the spectral parameter commute:

[T(ν), T(ν ′)] = 0. (A.17)

This establishes the claim made in section 3, and shows that all of the T(ν) can be diagonalized
simultaneously, with ν-independent eigenvectors.

The second consequence is more technical, but crucial for the algebraic Bethe ansatz
approach to the construction of eigenvectors. The key idea is to treat B(ν) as a creation
operator, and for this it is necessary to know how to pass the other components of the
monodromy matrix through it. Taking the relations implied by figure A5 over all possible
values of the vector (a, a′, b, b′) of free indices gives a total of 16 quadratic relations. These
can be rearranged to give, amongst others, the following exchange relations:

(→,→,←,←) : [B(ν), B(ν ′)] = 0; (A.18)

(→,←,←,←) : D(ν)B(ν ′) = g(ν − ν ′)B(ν ′)D(ν) − h(ν − ν ′)B(ν)D(ν ′); (A.19)

and (after swapping ν and ν ′)

(→,→,←,→) : A(ν)B(ν ′) = g(ν ′ − ν)B(ν ′)A(ν) − h(ν ′ − ν)B(ν)A(ν ′). (A.20)

The ‘structure constants’ g and h are related to the components of the R matrix:

g(ν) = R←←
←←(ν)

R→←→←(ν)
= a(ν − iη, η)

b(ν − iη, η)
= − sin(2η + iν)

sin(iν)
; (A.21)

h(ν) = R←→
→←(ν)

R→←→←(ν)
= c(η)

b(ν − iη, η)
= − sin(2η)

sin(iν)
. (A.22)

One example should illustrate the derivation of these relations. Setting (a, a′, b, b′) = (→,

←,←,←) in figure A5 and recording only the nonvanishing terms in the sums on left- and
right-hand sides,

ν

ν

ν
ν +

ν

ν

ν ν =
ν

ν ν

ν

(A.23)

Translated into symbols, this is

R→←
→←(ν − ν ′)D(ν)B(ν ′) + R←→

→←(ν − ν ′)B(ν)D(ν ′) = B(ν ′)D(ν)R←←
←←(ν − ν ′) (A.24)

which can be quickly rearranged to give (A.19).
At last we can write down some eigenvectors. The first is straightforward: it is the false

ferromagnetic ground state |�〉 = |↑↑ . . . ↑〉. In a vector notation,

|�〉 =
(

1
0

)
⊗
(

1
0

)
⊗
(

1
0

)
. . . (A.25)
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Since A and D cannot change the value of the spin S, and |�〉 is the unique state with (maximal)
spin N, it is an eigenvector of both A and D. In fact,

A(ν)|�〉 = aN(ν, η)|�〉,D(ν)|�〉 = bN(ν, η)|�〉. (A.26)

On the other hand C(ν)|�〉 = 0 (there is no state with a larger value of S), while B(ν)|�〉 is,
in general, a new state. For the simplest example, at N = 1, |�〉 = ( 1

0

)
and A,B,C and D

are all 2 × 2 matrices

A|N=1 =
(

a 0
0 b

)
, B|N=1 =

(
0 0
c 0

)
, (A.27)

C|N=1 =
(

0 c

0 0

)
, D|N=1 =

(
b 0
0 a

)
. (A.28)

Thus A(ν)|�〉 = a(ν)|�〉,D(ν)|�〉 = b(ν)|�〉, C(ν)|�〉 = 0, and B(ν)|�〉 = c(ν)
( 0

1

)
. Note

also that B(ν)|�〉 would serve as a second eigenvector of T = A + D. In fact, in this rather
trivial case it could equally have been B(ν ′)|�〉, for (almost) any value of ν ′. To generalize
this observation, at larger values of N one might search for eigenvectors of T of the form

|	〉 = B(ν1)B(ν2) · · · B(νn)|�〉. (A.29)

This is the guess mentioned in section 3 as stage (i) of the Bethe ansatz. For N > 1 this
guess (or ansatz) does not always work—extra conditions need to be imposed on the numbers
ν1, . . . , νn. To find these, we first compute the separate actions of A(ν) and D(ν) on our
would-be eigenvector |	〉. Using the A − B exchange relation, (A.20),

A(ν)|	〉 = A(ν)B(ν1)B(ν2) · · · B(νn)|�〉
= g(ν1 − ν)B(ν1)A(ν)B(ν2) · · · B(νn)|�〉

− h(ν1 − ν)B(ν)A(ν1)B(ν2) · · · B(νn)|�〉. (A.30)

Continuing to pass A through the B operators, but only recording explicitly those terms
resulting from the first term on the right-hand side of (A.20), yields

A(ν)|	〉 =
n∏

i=1

g(νi − ν)aN(ν, η)|	〉

−h(ν1 − ν)

n∏
i=2

g(νi − ν1)a
N(ν, η)B(ν)B(ν2) · · · B(νn)|�〉

+ further terms. (A.31)

A nice way to reconstruct the further terms uses the observation that |	〉 depends on the
parameters {ν1, . . . , νn} in a symmetrical manner, since, from (A.18), the B(νj ) commute.
This enables us to deduce that

A(ν)|	〉 = �+|	〉 +
n∑

k=1

�+
k |	k〉, (A.32)

where

�+ = aN(ν, η)

n∏
j=1

g(νj − ν),�+
k = −aN(νk, η)h(νk − ν)

n∏
j=1
j �=k

g(νj − νk) (A.33)

and

|	k〉 = B(ν)

n∏
j=1
j �=k

B(νj )|�〉. (A.34)

(It is instructive to check this directly, at least for n = 2.)
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The same steps can be repeated to find the action of the matrix D(ν) on |	〉, using (A.19)
and (A.20). The result is

D(ν)|	〉 = �−|	〉 +
n∑

k=1

�−
k |	k〉 (A.35)

with

�− = bN(ν, η)

n∏
j=1

g(ν − νj ), �−
k = −bN(νk, η)h(ν − νk)

n∏
j=1
j �=k

g(νk − νj ). (A.36)

The ansatz |	〉 will be an eigenvector of T = A + D if and only if all terms proportional to
|	k〉 can be made to cancel between A(ν)|	〉 and D(ν)|	〉. This requires �+

k + �−
k = 0 for

k = 1, . . . , n, or

(−1)n
n∏

j=1

sinh(2iη − νk + νj )

sinh(2iη − νj + νk)
= −aN(νk, η)

bN(νk, η)
, k = 1, . . . , n. (A.37)

These are the Bethe ansatz equations (BAE) for the roots {ν1, . . . , νn}. It is important to
reiterate that these equations do not have a unique solution, but rather a discrete set, matching
the fact that the matrix T has many eigenvalues. For each self-consistent solution {νi} of the
BAE, the corresponding eigenvector |	〉 of T has eigenvalue

t (ν) = �+ + �− = aN(ν, η)

n∏
j=1

g(νj − ν) + bN(ν, η)

n∏
j=1

g(ν − νj ), (A.38)

recovering formula (3.11) quoted in the main text.
The method can be straightforwardly extended to the more general situation of twisted

boundary conditions [28, 128]. The twist described earlier can be implemented by trading

W

[
βN

α′
N

αN

→
]
(ν) −→ e−iφW

[
βN

α′
N

αN

→
]
(ν) (A.39)

and

W

[
βN

α′
N

αN

←
]
(ν) −→ eiφW

[
βN

α′
N

αN

←
]
(ν) (A.40)

in definition (A.6) of the monodromy matrix, so that T (ν)ab becomes

Tab =
(

e−iφT→→ eiφT→←
e−iφT←→ eiφT←←

)
=
(

e−iφA(ν) eiφB(ν)

e−iφC(ν) eiφD(ν)

)
. (A.41)

The more general transfer matrix

T(ν) = e−iφA(ν) + eiφD(ν), (A.42)

then has eigenvalues

t (ν) = e−iφ�+ + eiφ�−

= e−iφaN(ν, η)

n∏
j=1

g(νj − ν) + eiφbN(ν, η)

n∏
j=1

g(ν − νj ), (A.43)

provided that the set of roots {ν1, . . . , νn} solves the twisted Bethe ansatz equations

(−1)n
n∏

j=1

sinh(2iη − νk + νj )

sinh(2iη − νj + νk)
= −e−2iφ aN(νk, η)

bN(νk, η)
, k = 1, . . . , n. (A.44)
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Finally, note that the four-spin reversal invariance of the local Boltzmann weights implies the
following property of the transfer matrix:

Tα′
α (ν,−φ) = Tᾱ′

ᾱ (ν, φ), (↑̄ =↓, ↓̄ =↑). (A.45)

Indeed, from definitions (A.1), (A.2), (A.3) and (A.6) we have T α′
α (ν)ab = T ᾱ′

ᾱ (ν)āb̄ and
therefore

Tα′
α (ν,−φ) = eiφT α′

α (ν)→→ + e−iφT α′
α (ν)←← = eiφT ᾱ′

ᾱ (ν)←← + e−iφT ᾱ′
ᾱ (ν)→→

= Tᾱ′
ᾱ (ν, φ). (A.46)

A first consequence of the equality (A.45) is that T(ν, φ) and T(ν,−φ) have the same set of
eigenvalues. Furthermore, (A.45) also means that

T(ν,−φ) = UT(ν, φ)U−1, U =
N︷ ︸︸ ︷

σx ⊗ σx · · · ⊗ σx, (A.47)

where σx is in the vector notation a Pauli matrix. Hence U 2 = 1 and the set of eigenvectors of
T(ν, φ) splits into U-invariant singlets and doublets. Invoking the Perron–Frobenius theorem
in the spin 0 sector at φ = 0 and continuity we conclude that the ground state is a singlet and
its associated eigenvalue t0(ν, φ) depends on φ only through its square:

t0(ν, φ) = t0(ν,−φ). (A.48)

Appendix B. ODE results

This appendix collects some properties of a particular solution of the ordinary differential
equation [

− d2

dx2
+ x2M +

l(l + 1)

x2

]
y(x) = Ey(x), (B.1)

defined for M > 1 by the asymptotic

y(x) ∼ 1√
2i

x−M/2 exp

[
− 1

M + 1
xM+1

]
(B.2)

as x tends to infinity in any closed subsector of S−1 ∪ S0 ∪ S1, where

Sk :=
∣∣∣∣arg(x) − 2πk

2M + 2

∣∣∣∣ < π

2M + 2
. (B.3)

This is the ‘Sibuya solution’, subdominant inS0, relevant to the basic ODE/IM correspondence
connecting the six-vertex model to an ordinary differential equation.

B.1. The special case of M = 1

Setting M = 1 gives the simple harmonic oscillator, exactly solvable for all l in terms of
the confluent hypergeometric functions M(a, b, z) and U(a, b, z). The correctly normalized
solution, subdominant in S0, is

y(x,E, l) = 1√
2i

xl+1e−x2/2U

(
1

2

(
l +

3

2

)
− E

4
, l +

3

2
, x2

)
, (B.4)

and has the large x asymptotic

y(x,E, l) ∼ 1√
2i

x−1/2+E/2[1 + O(x−2)] e− 1
2 x2

. (B.5)
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Note the appearance of an extra factor of xE/2 compared with formula (B.2). This has an
interesting effect on the TQ relation [4]18. First, the modified asymptotic means that the most
natural definition of the shifted solutions yk(x,E, l) is now

yk(x,E, l) = ωk/2−kE/2y(ω−kx, ω2kE, l), ω = eiπ/2, (B.6)

since this preserves the property W0,1(E, l) = 1. The basic Stokes relation (4.19) remains

C(E, l)y0(x, E, l) = y−1(x, E, l) + y1(x, E, l), (B.7)

where C(E, l) = W−1,1(E, l). This must be projected onto a solution defined through its
behaviour at the origin to eliminate x. Define ψ(x,E, l) as in (5.6) through the small-x
asymptotic

ψ(x,E, l) ∼ xl+1 + O(xl+3) (B.8)

and shifted solutions

ψk(x,E, l) = ωk/2+kE/2ψ(ω−kx, ω2kE, l). (B.9)

The prefactor ensures that W [yk, ψk](E, l) = W [y,ψ](ω2kE, l), while a consideration of
the small-x behaviour of ψk shows that ψk(x,E, l) = ω−k(l+1/2)+kE/2ψ(x,E, l). Hence
W [yk, ψ](E, l) = ωk(l+1/2)−kE/2W [y,ψ](ω2kE, l). Taking the Wronskian of (B.7) with ψ

and setting D(E, l) = W [y,ψ](E, l),

C(E, l)D(E, l) = ω−(l+1/2)+E/2D(ω−2E, l) + ω(l+1/2)−E/2D(ω2E, l). (B.10)

The modified asymptotic has resulted in a couple of extra E-dependent factors. On the
integrable models side of the correspondence, M = 1 is the free-fermion point and explicit
constructions of the T and Q functions had led Bazhanov, Lukyanov and Zamolodchikov
to precisely the same ‘renormalization’ of the TQ relation [31], and so the correspondence
survives.

The functions C and D can also be calculated directly from the ordinary differential
equation, of course. Taking from [192] the analytic continuation formula

U(a, b, z e2π in) = (1 − e−2π ibn)
�(1 − b)

�(1 + a − b)
M(a, b, z) + e−2π ibnU(a, b, z), (B.11)

the Wronskian

W [U(a, b, z),M(a, b, z)] = �(b)

�(a)
z−b ez, (B.12)

and, for b > 1, the |z| → 0 asymptotic

U(a, b, z) ∼ �(b − 1)

�(a)
z1−b + · · · (B.13)

one finds

C(E, l)|M=1 = 2π

�
(

1
2 + 2l+1+E

4

)
�
(

1
2 − 2l+1−E

4

) (B.14)

and

D(E, l)|M=1 = 2�
(
l + 3

2

)
√

2i�
(

2l+3−E
4

) . (B.15)

The zeros of D(E, l) are at E = 2l − 1 + 4k, k = 1, 2, . . ., and reproduce the well-known
eigenvalues of the radial simple harmonic oscillator. Zeros of C(E, l) correspond to there
being normalizable wavefunctions on a contour which runs along the imaginary axis, save for
a diversion on the right of the singularity at x = 0. A variable change x → x/i maps this to
the real axis and results in the so-called PT -symmetric simple harmonic oscillator, discussed
in [4, 193]. Since this variable change also negates E, the eigenvalues of this problem,
from (B.14), are 4k − 2 ± (2l + 1), k = 1, 2, . . . .

18 The argument here is a slight streamlining of that given in [4].
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B.2. The values of C(0, l) and D(0, l)

For general values of M, the ordinary differential equation cannot be solved in closed form.
However, it does simplify at E = 0, and this allows the value D(0, l) to be found. Observe
first that the function

ϕ(x) =
(

M + 1

2

) M
2M+2

x
M−1
2M+2 y

((
M + 1

2

) 1
M+1

x
2

M+1 , E, l

)
(B.16)

solves the Schrödinger equation[
− d2

dx2
+ x2 − σx

2−2M
M+1 +

γ (γ + 1)

x2

]
ϕ(x) = �ϕ(x), (B.17)

where

σ =
(

2

M + 1

) 2M
M+1

E, γ = 2l + 1

M + 1
− 1

2
, � = 0. (B.18)

At E = 0, σ is zero and (B.17) is the simple harmonic oscillator, which as just described is
exactly solvable in terms of the confluent hypergeometric functions U(a, b, z) and M(a, b, z).
The correctly normalized solution, subdominant in the sector S0, is

ϕ(x)|E=0 = 1√
2i

xγ +1e−x2/2U

(
1

2

(
γ +

3

2

)
, γ + 3

2 , x2

)
. (B.19)

Reversing the variable changes, extracting the leading behaviour as x → 0 and comparing
with (5.13), we find

D(E, l)|E=0 = 1√
2iπ

�

(
1 +

2l + 1

2M + 2

)
(2M + 2)

2l+1
2M+2 + 1

2 . (B.20)

The value of C(0, l) is easier to find: from (5.14) at E = 0,

C(E, l)|E=0 = 2 cos

(
2l + 1

2M + 2
π

)
. (B.21)

B.3. The large-E behaviour of D(E, l)

Given that ψ(x,E, l) is defined to have small-x behaviour ψ(x,E, l) ∼ xl+1, the Wronskian
D(E, l) ≡ W [y(x,E, l), ψ(x,E, l)] can be evaluated for Re l > −1/2 as

D(E, l) = lim
x→0

[(2l + 1)xly(x,E, l)], (B.22)

where [
− d2

dx2
+ x2M +

l(l + 1)

x2
− E

]
y = 0. (B.23)

For this subsection the aim is to find the leading behaviour of D(E, l) as |E| → ∞. As
observed by Langer [176], the usual WKB approximation cannot be applied directly in this
situation because of the singularity at x = 0. Instead, Langer suggested making the variable
change x = ez, y(x) = ez/2φ(z). Setting λ = l + 1/2 the equation becomes[

− d2

dz2
+ R(z,E, λ)

]
φ = 0, (B.24)

where R(z,E, λ) = e2z/g − Ee2z + λ2 and we set g = 1/(M + 1). The general WKB
approximation for φ is

A

R(z,E, λ)1/4
exp

[∫ z

z0

√
R(u,E, λ) du

]
+

B

R(z,E, λ)1/4
exp

[
−
∫ z

z0

√
R(u,E, λ) du

]
, (B.25)
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where z0 is an arbitrary constant. Provided arg(−E) < π , this WKB expression is valid for
all real z (and thus for x all the way down to zero) since R−3/4(R−1/4)′′ tends to zero uniformly
in z as |E| → +∞ (see [158] for more discussion of the validity of the WKB approximation).
The solution we aim to approximate is subdominant as x → +∞, which requires A = 0. The
value of B is fixed by the large-x asymptotic (B.2). It is convenient to set z0 = +∞, in which
case the correctly normalized approximate solution can be written for M > 1 (g < 1/2) as
[4]

φWKB(z, E, λ) = 1√
2iR(z,E, λ)1/4

exp

(∫ ∞

z

[
√

R(u,E, λ) − eu/g] du − g ez/g

)
. (B.26)

Substituting into (B.22) gives the WKB approximation to the spectral determinant:

DWKB(E, l) = lim
z→−∞[2λ eλzφWKB(z, E, l)]

=
√

2λ

i
lim

z→−∞

[
exp

(
λz +

∫ ∞

z

[
√

R(u,E, λ) − eu/g] du

)]
. (B.27)

To eliminate extraneous factors it is convenient to divide through by DWKB(0, l), giving

DWKB(E, l)

DWKB(0, l)
= exp(I (E, λ)), (B.28)

where

I (E, λ) =
∫ ∞

−∞
[
√

e2u/g − Ee2u + λ2 −
√

e2u/g + λ2] du. (B.29)

The remaining step is to analyse this expression as |E| → ∞ with arg(−E) < π . Changing
variables u → u + g

2−2g
ln(−E) and setting µ = 1/(2 − 2g) = (M + 1)/(2M),

I (E, λ) = (−E)µ
∫ ∞

−∞
[
√

e2u/g + e2u + λ2(−E)−2µ −
√

e2u/g + λ2(−E)−2µ] du

∼ (−E)µ
∫ ∞

−∞
[
√

e2u/g + e2u − eu/g] du = (−E)µ
∫ ∞

0
[
√

t2M + 1 − tM ] dt. (B.30)

Performing the integral then gives the result quoted in the main text:

ln D(E, l) ∼ a0

2
(−E)µ, |E| → ∞, | arg(−E)| < π, (B.31)

where

a0 = 1√
π

�

(
−1

2
− 1

2M

)
�

(
1 +

1

2M

)
= −1√

π
�(−µ)�

(
µ +

1

2

)
, µ = (M + 1)/2M.

(B.32)

Note that this result is independent of l, and applies equally to D−(E, l) ≡ D(E, l) and (after
analytic continuation) to D+(E, l) ≡ D(E,−1 − l).

B.4. The ‘small-E/large-l’ asymptotic of ln D(E, l)

The Langer-transformed equation can also be used to extract the large-l behaviour of the
spectral determinant, a piece of data which is relevant for matching solutions of the quantum
Wronskian equation. Once the initial differential equation for y(x,E, l) has been transformed
into the equivalent Schrödinger problem (B.24), the rôle of the energy parameter is taken by
−λ2, and the WKB approximation is thus good in the large-l limit, in addition to the large-E
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limit investigated above. It is therefore possible to study the large-l behaviour of D(E, l) with
standard semiclassical techniques. We start with the WKB expression (B.28) for the ratio
DWKB(E, l)/DWKB(0, l), and expand the integrand of I (E, λ) about E = 0 as√

e2u/g − Ee2u + λ2 −
√

e2u/g + λ2 = −
∞∑

n=1

(2n − 3)!!

n!2n

Ene2nu

(e2u/g + λ2)n−1/2
, (B.33)

so that

I (E, λ) = −
∞∑

n=1

bn(λ)En, (B.34)

where the coefficients bn can be written in terms of standard Beta integrals:

bn(λ) = (2n − 3)!!

n!2n

∫ ∞

−∞

e2nθ

(e2θ/g + λ2)n−1/2
dθ

= λ1−2n+2ng

(
g

4n!
√

π

)
�(ng)�(−1/2 + n(1 − g)). (B.35)

To ease comparison with appendix C, we also give this result in integrable models notation,
using the dictionary entries

λ = 2p/g, E = �2(1 − g)

(
2

g

)2−2g

s (B.36)

to find

ln
DWKB(E, l)

DWKB(0, l)
= −

∞∑
n=1

an(p)sn, (B.37)

where in the limit p � 1

an(p) ∼ bn(2p/g)�2n(1 − g)

(
2

g

)2n−2ng

= αnp
1−2n+2ng, (B.38)

αn = �(ng)�(−1/2 + n(1 − g))

2n!
√

π
�2n(1 − g), (B.39)

matching the results quoted in [153] and in (C.2).

Appendix C. Quantum Wronskians and the Weiner–Hopf method

In this appendix we show how the quantum Wronskian allows the power series expansions
of the functions ln Q± to be pinned down uniquely, following appendix A of [153]. A useful
background reference for the Weiner–Hopf method is [194]. The proof relies on the following
properties of Q(s, p).

(i) The function ln Q+(s, p) has a formal power series expansion

ln Q+(s, p) = −
∞∑

n=1

an(p)sn. (C.1)

(ii) The coefficients an(p) are meromorphic functions of p, analytic in the half-plane
Re(2p) > −g, where g = β2 so q = eiπg .
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(iii) As p → ∞ in the right half-plane,

an(p) ∼ αnp
1−2n+2ng (C.2)

with

α1 = 1

2
√

π
�(g)�

(
1

2
− g

)
�(1 − g)2. (C.3)

(iv) Q− is related to Q+ as

Q−(s, p) = Q+(s,−p) = exp

(
−

∞∑
n=1

an(−p)sn

)
. (C.4)

(v) The quantum Wronskian condition holds

e2π ipQ+(qs, p)Q−(q−1s, p) − e−2π ipQ+(q
−1s, p)Q−(qs, p) = 2i sin(2πp). (C.5)

These properties lead to a sequence of problems of Weiner–Hopf-type which fix the coefficients
an(p) uniquely, as follows.

First, substituting the power series (C.1) and (C.4) into the quantum Wronskian (C.5)
gives

e2π ip exp

(
−

∞∑
n=1

(qnan(p) + q−nan(−p))sn

)

− e−2π ip exp

(
−

∞∑
n=1

(q−nan(p) + qnan(−p))sn

)
= 2i sin(2πp). (C.6)

Expanding and equating coefficients leads to a set of relations of the form

sin(πng + 2πp)an(p) − sin(πng − 2πp)an(−p) = Rn(p), n = 1, 2, . . . , (C.7)

where each function Rn(p) can be expressed in terms of ak(±p) with k = 1, . . . , n − 1. For
example,

R1 = 0 (C.8)

R2 = −(qa1(p) + q−1a1(−p))2 e4π ip sin(2πp)/2. (C.9)

Let’s consider a homogeneous case first, setting Rn = 0. Then (C.7) can be rewritten as

�(1 − ng + 2p)

�(ng + 2p)
an(p) = �(1 − ng − 2p)

�(ng − 2p)
an(−p). (C.10)

The left-hand side of this equation is analytic in the right half-plane Re(2p) > −g, and
the right-hand side is analytic in the left half-plane Re(2p) < g. The common strip of
analyticity −g < Re(2p) < g ensures that both sides correspond to a single function fn(p)

which is therefore entire: it is analytic on the whole complex plane. Furthermore, combining
�(z + a)/�(z + b) ∼ za−b with the asymptotic (C.2) shows that fn(p) = O(|p|2−2n) in the
right half-plane, and likewise in the left half-plane. For n > 1 Liouville’s theorem then implies
that fn(p) is identically zero (i.e. there is no zero mode) while for n = 1, f1(p) is a constant,
which is then fixed by (C.3).

However, for n > 1 the RHS of (C.7) is not zero. In addition the faster rate of decay of
an(p) allows for a more effective rearrangement of (C.7). Start by rewriting this equation as

sin(πng + 2πp − πK)an(p) − sin(πng − 2πp − πK)an(−p) = (−1)KRn(p) (C.11)
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for K ∈ Z, and then as

�(1 − ng + 2p + K)

�(ng + 2p − K)
an(p) − �(1 − ng − 2p + K)

�(ng − 2p − K)
an(−p) = Sn(p), (C.12)

where

Sn(p) = (−1)K

π
�(1 − ng + 2p + K)�(1 − ng − 2p + K)Rn(p). (C.13)

This function has poles at the points

2p = ±(K + 1 − ng + m) m = 0, 1, 2, . . . (C.14)

coming from the gamma functions. Thus it has a strip of analyticity |Re p| < (K +1−ng). To
maximize the width of this strip, K should be as large as possible. At the same time, we must
preserve the property that the first term on the LHS of (C.12) decays in the right half-plane,
and the second term decays on the left half-plane. The asymptotic behaviour of the first term
in the right half-plane is

�(1 − ng + 2p + K)

�(ng + 2p − K)
an(p) ∼ p2−2n+2K (C.15)

so the largest value we can take for K is n − 2. The equation to be solved becomes

�(n − 1 − ng + 2p)

�(2 − n + ng + 2p)
an(p) − �(n − 1 − ng − 2p)

�(2 − n + ng − 2p)
an(−p) = Sn(p), (C.16)

where

Sn(p) = (−1)n

π
�(n − 1 − ng + 2p)�(n − 1 − ng − 2p)Rn(p). (C.17)

The final step is to find an ‘analytic decomposition’ of the right-hand side of (C.16) into the
sum of functions analytic and decaying in the left and right half-planes:

Sn(p) = G+(p) − G−(p). (C.18)

Assuming for the moment that this can be achieved, (C.16) can be rewritten as

�(n − 1 − ng + 2p)

�(2 − n + ng + 2p)
an(p) − G+(p) = �(n − 1 − ng − 2p)

�(2 − n + ng − 2p)
an(−p) − G−(p). (C.19)

Now the same arguments as given above can be used to show that the left- and right-hand
sides of (C.19) are identically zero. Hence

an(p) = �(2 − n + ng + 2p)

�(n − 1 − ng + 2p)
G+(p). (C.20)

It only remains to find the decomposition (C.18). So long as Sn(p) has a non-empty strip of
analyticity and remains bounded there, this can be achieved using Cauchy’s theorem. Write

Sn(p) = 1

2π i

∮
C

Sn(p
′)

(p′ − p)
dp′, (C.21)

where C is the contour a ∪ b ∪ c ∪ d shown in figure C1, enclosing the point p and lying
entirely within the strip of analyticity.

Moving the segments b and d down and up to −i∞ and +i∞ respectively, their
contributions to Sn(p) vanish, allowing us to write

Sn(p) = G+(p) − G−(p), (C.22)
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Figure C1. The contour for the analytic decomposition of Sn(p).

where G+(p) is the contribution to (C.21) from a, and G−(p) is (minus) the contribution
from c, and these two functions do indeed decay in the right and left half-planes, respectively.
Changing integration variable to t ≡ p′/i and using (C.13) for Sn(p), (C.20) becomes

an(p) = (−1)n

2π2

�(2 − n + ng + 2p)

�(n− 1 − ng + 2p)

∫ ∞

−∞

�(n− 1 − ng + 2it)�(n− 1 − ng − 2it)Rn(it)

(p − it)
dt,

(C.23)

and an(p) has been determined uniquely in terms of the am(p) with m < n. Since
the first coefficient, a1(p), has already been fixed via the homogeneous equation and the
asymptotic (C.3), this completes the proof that the power series (C.1) is uniquely determined
by properties (i)–(v). Note that the question of the convergence of the series is at this stage
moot. However, once the identification with the expansion of a spectral determinant has been
made, this follows from standard properties of the solutions of ordinary differential equations.

Appendix D. Derivation of the TBA equations and of the NLIE

In this appendix, we describe how to turn certain functional relations into nonlinear integral
equations. We also indicate how the equations encode the effective central charges of the
associated integrable models.

D.1. TBA equations from truncated fusion hierarchies

Finite sets of functional equations such as the T-system (3.63)—or equivalently (5.45)—can
be transformed into sets of nonlinear integral equations of the form known in the integrable
model community as thermodynamic Bethe ansatz (TBA) equations [152]. Recall that the
T-system (3.63) is the following set of h − 1 coupled functional equations

t (m)(ω−1E)t(m)(ωE) = 1 +
(h−1)/2∏
j=1/2

(t (j)(E))G2j,2m, m = 1/2, 1, . . . , (h − 1)/2, (D.1)

where ω = e2π i/h(M+1) and G is the incidence matrix of the Ah−1 Dynkin diagram. In fact the
following arguments apply equally for any simply laced Dynkin diagram, and so—in the spirit
of [195, 196]—we shall give a slightly more general treatment here than is strictly needed for
the differential equation application. Also, because we consider the more general situation
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we shall use the integrable model notation T rather than t and s rather than E. We further
streamline by setting r = h − 1 and

Ta(s) = t (a/2)(E), a = 1, . . . , r (D.2)

so that the T-system is

Ta(ω
−1s)Ta(ωs) = 1 +

r∏
b=1

(Tb(s))
Gab , a = 1, . . . , r. (D.3)

In the more general cases, a and b label nodes on the Dynkin diagram described by Gab, and
r is its rank.

The first step towards the TBA is to introduce the Y-functions, defined by

Ya(s) =
r∏

b=1

Tb(s)
Gab , a = 1, . . . , r. (D.4)

Clearly, (D.3) implies

Tb(ω
−1s)Tb(ωs) = 1 + Yb(s) (D.5)

and a suitable product over b results in the set of equations

Ya(ωs)Ya(ω
−1s) =

r∏
b=1

(1 + Yb(s))
Gab , (D.6)

called a Y-system. Equivalently, on setting s = eθ/µ with µ = (M + 1)/hM , we have

Ya

(
θ + i

π

h

)
Ya

(
θ − i

π

h

)
=

h−1∏
b=1

(1 + Yb(θ))Gab . (D.7)

These coincide with the Y-systems of Zamolodchikov [195], which for the Ah−1 cases encode
the finite size effects of certain integrable quantum field theories with Zh symmetry. (We shall
comment on the relationship between these models and the continuum limit of the twisted
six-vertex model at the relevant values of φ and η at the end of this subsection.)

Since in our cases T and Y are entire functions of s, they are 2π iµ = 2π i(h + 2)/h

-periodic functions of θ . In fact, given the symmetry Ya = Yh−a , this periodicity also follows
from the Y-system (D.7); see [195, 197, 198] for more details.

Next, the Y-system is transformed into a set of integral equations by introducing the
‘pseudoenergies’

εa(θ) = ln Ya(θ), (D.8)

which as a result of (D.7) satisfy

εa

(
θ + i

π

h

)
+ εa

(
θ − i

π

h

)
−

r∑
b=1

Gabεb(θ) =
r∑

b=1

GabLb(θ) (D.9)

with

La(θ) = ln
(
1 + e−εa(θ)

)
. (D.10)

Equation (D.9) has many solutions, and to pin things down some more information about
the properties of the functions involved is required. We shall need the following. Since the
functions t (a/2)(s) are entire and hence regular at E = 0, the Ya(θ) approach constant values
as θ → −∞. These constants solve the stationary (θ -independent) version of (D.7); as will
be justified shortly, the particular solution relevant here has all its components positive:

Ya = lim
θ→−∞

eεa(θ) = sin
(

aπ
h+2

)
sin
(

(a+2)π

h+2

)
sin2

(
π

h+2

) . (D.11)
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On the other hand, as |s| → ∞ with −π + δ < arg(s) < π − δ, (where δ is an arbitrarily small
positive number), the leading asymptotics of the ln(t (m)(s)), and hence also of the ln(Ya(s)),
are proportional to sµ.19 Thus, as Re θ → +∞ in any strip |Im θ | < π(h + 2)/h − δ, the
pseudoenergies behave as

εa(θ) ∼ maL eθ , (D.12)

with, in fact, exponentially small corrections. A consideration of (D.9) at large real values of
θ , where the right-hand side vanishes, shows that the constants maL are proportional to the
components of the Perron-Frobenius eigenvector of G. For the Ah−1 case of prime interest
here, we can write these components as

maL = b0

2
sin
(πa

h

)
, b0 ∈ R. (D.13)

Finally, for the solution of (D.9) that we require here—the ground state eigenvalue of the
integrable model, or equivalently the quantum-mechanical spectral determinant—the zeros of
the t (a/2)(s) all lie on the negative s axis. This means that the Y-functions do not vanish on
the real θ axis, which when combined with (D.12) justifies the choice of the solution (D.11)
of the stationary Y-system. It also implies that the functions

fa(θ) = εa(θ) − maL eθ (D.14)

are bounded in the ‘analyticity strip’ |Im(θ)| < π/h20 and satisfy the relation

fa

(
θ + i

π

h

)
+ fa

(
θ − i

π

h

)
−

r∑
b=1

Gabfb(θ) =
r∑

b=1

GabLb(θ). (D.15)

Taking an (ε-regularized) Fourier transform

f̃ (k) = F[f (θ)] = lim
ε→0+

∫ ∞

−∞
dθ f (θ) e−ikθ+εθ (D.16)

of both sides of (D.15),
r∑

b=1

(
2δab cosh

(
πk

h

)
− Gab

)
f̃ b(k) =

r∑
b=1

GabL̃b(k). (D.17)

Solving for f̃ a(k) and transforming back to θ -space yields the equations

εa(θ) = maL eθ − 1

2π

r∑
b=1

∫ ∞

−∞
φab(θ − θ ′)Lb(θ

′) dθ ′ (D.18)

with

φ̃ab(k) = −2π

r∑
c=1

(
2δac cosh

(
πk

h

)
− Gac

)−1

Gcb. (D.19)

The inverse Fourier transforms of the kernels φ̃ab(k) can be found exactly in terms of
elementary functions, and the results written as

φab(θ) = −i
d

dθ
ln Sab(θ), (D.20)

19 Asymptotics of this nature can be proved in the ODE world using well-established techniques—see for example
[20, 89]; given the ODE/IM correspondence this is also now the most efficient approach for the integrable models.
20 The existence of such a strip surrounding the real axis is usually deduced numerically in finite-lattice models and
extrapolated to the continuum limit. Via the ODE/IM correspondence this property has now been proven directly in
the continuum: it follows from the entirety property of the T ’s and the fact that their zeros are exactly on the negative
s-axis [11, 89].
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where

Sab(θ) =
∏

x∈Aab

{x}, a, b = 1, . . . , r. (D.21)

The integer-valued index set Aab can be characterized via the Weyl group of the related Lie
algebra, and

{x} = (x − 1)(x + 1), (x) = sinh
(

θ
2 + iπx

2h

)
sinh

(
θ
2 − iπx

2h

) . (D.22)

For Ah−1 the explicit formula is

Sab(θ) =
a+b−1∏
|a−b|+1

step2

{x}, a, b = 1, . . . , r. (D.23)

For the other cases see, for example, [199, 200]; for their relation with the Fourier
transforms (D.19), see [195, 196].

Nonlinear integral equations of the form (D.18) also arise in the framework of the
thermodynamic Bethe ansatz [152, 201] method for finding the ground-state energies of
massive relativistic integrable field theories in 1 + 1 dimensions, and hence they are often
called TBA equations. In this picture L should be interpreted as the circumference of the
infinite cylinder on which the theory is defined, and Sab(θ) are the two-particle S-matrix
elements describing the factorized scattering of r particles of relative masses ma . Strictly
speaking, the equations just derived correspond to an ultraviolet limit of these TBA equations,
in which the overall mass scale is taken to zero.

Once the εa(θ) and hence the Ya(θ) have been found via (D.18), it remains to recover the
T-functions. This can be done using much the same reasoning as led to the TBA equation,
starting this time from (D.5). Dividing through by Ya(s), using (D.4) and taking logs,

ln Ta

(
θ + i

π

h

)
+ ln Ta

(
θ − i

π

h

)
−

r∑
b=1

Gab ln Tb(θ) = La(θ). (D.24)

From (D.11) and (D.5), the functions ln Ta(θ)−maLeθ /(2 cos(π/h)) are bounded in the same
analyticity strip as the fa(θ) above, and can likewise be found by a Fourier transformation.
The final result is

ln Ta(θ) = maL

2 cos(π/h)
eθ − 1

2π

r∑
b=1

∫ ∞

−∞
ψab(θ − θ ′)Lb(θ

′) dθ ′, (D.25)

where the Fourier transform of the kernel ψab(θ) is

ψ̃ab(k) = −2π

(
2δab cosh

(
πk

h

)
− Gab

)−1

. (D.26)

Again, the inverse transform can be performed, to find that ψab(θ) is defined as φab(θ), save
for the replacement of the blocks {x} by (x) in (D.21). However, as explained in section
appendix E.1 below, for spectral applications one can often get away without calculating the
Ta explicitly [1].

It is also interesting to extract the ground state energy of the spin chain, or of the
corresponding quantum field theory. It might be tempting to use (3.19) for this purpose, but
one has to be careful as the continuum limit involves an infinite shift of the θ -like variable ν

in (3.19). This provides some intuition for the fact that the universal part of the continuum
ground-state energy is to be found in the large-θ asymptotic of the fundamental transfer matrix,
T1(θ) in current notations.
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The relevant asymptotic expansion has the form [30, 202]

ln T1(θ) − m1L

2 cos(π/h)
eθ ∼ −

∞∑
n=1

CnI
vac
2n−1 e(1−2n)θ , (D.27)

where the numbers I vac
2n−1 are the eigenvalues of the local conserved charges of the system on

a cylinder of circumference L. The first of these, I1, gives the ground state energy, and from
the results of [30, 202],

ln T1(θ) − m1L

2 cos(π/h)
eθ ∼ −4 sin(π/h)

m1
I vac

1 e−θ − · · · . (D.28)

This asymptotic also follows from (D.24). Let q(σ)
a be an orthonormal set of eigenvectors of

Gab, where σ runs over the exponents of G, so that
r∑

b=1

Gabq
(σ)
b = 2 cos(πσ/h)q(σ)

a ,
∑

σ

q(σ)
a q

(σ)
b = δab. (D.29)

Then

ψ̃ab(k) = −π
∑

σ

q(σ)
a q

(σ)
b

cosh(πk/h) − cos(πσ/h)
(D.30)

and is easily seen to have poles at k = (±σ + 2hn)i, n ∈ Z. For large θ the inverse Fourier
transform yielding ψab(θ) can be expanded over the residues of these poles, the leading term
coming from the pole nearest to the real axis:

ψab(θ) = 1

2π

∫ ∞

−∞
dkψ̃(k)eikθ

= −h

sin(π/h)
q(1)

a q
(1)
b e−θ + · · · . (D.31)

For the Ar case relevant for comparison with the expansion (D.27), the normalized eigenvector

has components q(1)
a =

√
2
h

sin(πa/h). Substituting (D.31) into the integral formula (D.25)
and swapping sums with integrals gives an asymptotic expansion which matches (D.27), and
begins

ln T1(θ) − m1L

2 cos(π/h)
eθ = 1

π

r∑
b=1

∫ ∞

−∞
sin(πb/h) e−θ+θ ′

Lb(θ
′) dθ ′ + · · · . (D.32)

Comparing leading terms

I vac
1 ≡ E0(L) = − 1

4π

r∑
a=1

∫ ∞

−∞
m1

sin(πa/h)

sin(π/h)
eθLa(θ) dθ

= − 1

4π

r∑
a=1

∫ ∞

−∞
ma eθLa(θ) dθ, (D.33)

where La(θ) = ln(1 + e−ε(θ)) and ε(θ) solves (D.18). Recalling that ceff was defined via

E0(L) = F(L) = −πceff

6L
, (D.34)

we see that (D.33) is equivalent to

ceff = 3

2π2

r∑
a=1

∫ ∞

−∞
dθ maL eθLa(θ). (D.35)
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Even though ε(θ) cannot be found in closed form, it turns out that the integral in (D.33) can
be calculated exactly as a sum of Rogers dilogarithm functions

L(x) = −1

2

∫ x

0
dy

[
ln y

1 − y
+

ln(1 − y)

y

]
. (D.36)

(For more about sum rules for Rogers dilogarithm see [203].) For our model, the final result is

ceff = 3

π2

r∑
a=1

L
(

1

1 + Ya

)
= 3

π2

r∑
a=1

L
(

sin2
(

π
h+2

)
sin2

(
π a+1

h+2

))

= h − 1

h + 2
= 2M − 1

2M + 2
, (h = 2M), (D.37)

which is exactly half the central charge for the Zh parafermion models [204]. How does this
compare with the continuum limit of the twisted six-vertex model? As mentioned before
the untwisted six-vertex model is equivalent, in its continuum limit, to the theory of a free
compactified boson with central charge c6V

eff = 1. For the twisted variant of the six-vertex
model we have instead

cT 6V
eff = 1 − 6φ2

π(π − 2η)
. (D.38)

Inserting the relations

η = π

2

M

M + 1
, φ = π

2M + 2
(D.39)

we find

cT 6V
eff = 2M − 1

2M + 2
, (D.40)

which is the result quoted in (D.37). The factor of two discrepancy with the parafermionic
central charge is, for h odd, simply due to a double counting that can be avoided via a folding
procedure that identifies conjugate nodes j ↔ h − j in the related Ah−1 Dynkin diagram. A
slightly more subtle folding phenomena is at work in the h even case too [1].

D.2. NLIEs from Bethe ansatz systems

The TBA method relies on the truncation of the fusion hierarchy, and so can only work at
rational values of η/π or M. In addition the resulting equations depend in a complicated way
on the arithmetic properties of these numbers. However, there is another approach which
works more generally. Employing ideas developed in [5, 27, 28, 31, 205], the Bethe ansatz
equations associated with a TQ relation of the type discussed here can be transformed into
a single nonlinear integral equation. Starting with the TQ relation (5.14), set E = Ek and
invoke the entirety of C(E, l) and D(E, l) to obtain

ω2l+1 D(ω2Ek, l)

D(ω−2Ek, l)
+ 1 = 0, k = 1, 2, . . . . (D.41)

Replacing D(E, l) with its Hadamard factorization (5.22), valid for M > 1, the Bethe ansatz
equations for the eigenvalues of D(E, l) are recovered:

∞∏
j=1

(
Ej − ω2Ek

Ej − ω−2Ek

)
= −ω2l+1, k = 1, . . . . (D.42)

Setting

a(E) = ω2l+1 D(ω2E, l)

D(ω−2E, l)
= ω2l+1

∞∏
j=1

(
Ej − ω2E

Ej − ω−2E

)
, (D.43)
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the Bethe ansatz equations are rephrased as conditions on the function a(E):

a(Ek) + 1 = 0, k = 1, 2, . . . . (D.44)

In fact, it follows from the TQ relation that the zeros of a(E) + 1 are precisely the zeros of
D(E), the Bethe roots Ek , together with the zeros of T (E). For simplicity, we consider the
ground state situation, for which all the Ek are real and positive, and all the zeros of T (E) are
real and negative. We begin by taking the logarithm of (D.43)

ln a(E) = iπ(2l + 1)

M + 1
+

∞∑
k=1

F(E/Ek), (D.45)

where F(E) = ln[(1 − ω2E)/(1 − ω−2E)]. The logarithmic derivative ∂E ln(1 + a(E)) has
a simple pole at each eigenvalue Ek . Applying Cauchy’s theorem, the infinite sum in (D.45)
can be replaced by a contour integral, the contour encircling the points Ek in an anticlockwise
direction, while avoiding all other singularities of ln(1 + a(E)). Given our assumptions
about the locations of the zeros of D(E) and T (E), a suitable contour C runs from +∞ to 0
above the real axis, encircles the origin then returns to ∞ below the real axis. With this in
mind (D.45) becomes

ln a(E) = iπ(2l + 1)

M + 1
+
∫
C

dE′

2π i
F(E/E′)∂E′ ln(1 + a(E′)). (D.46)

We change variables via E = exp(2Mθ/(M + 1)) and define (with a mild abuse of notation)
ln a(θ) ≡ ln a(e2Mθ/(M+1)). Integrating by parts we have

ln a(θ) = iπ(2l + 1)

M + 1
−
∫
C1

dθ ′ ∂θ ′R(θ − θ ′) ln(1 + a(θ ′))

+
∫
C2

dθ ′ ∂θ ′R(θ − θ ′) ln(1 + a(θ ′)), (D.47)

where

R(θ) = i

2π
∂θF (e2Mθ/(M+1)). (D.48)

The new integration contours C1 and C2 run from −∞ to ∞ just below and just above the real
axis respectively. Using the property [a(θ)]∗ = a(θ∗)−1, which follows from the Bethe ansatz
equations, we rewrite the integrals in terms of integrations along the real axis:

ln a(θ) −
∫ ∞

−∞
dθ ′R(θ − θ ′) ln a(θ ′) = iπ(2l + 1)

M + 1

− 2i
∫ ∞

−∞
dθ ′R(θ − θ ′)Im ln(1 + a(θ ′ − i0)). (D.49)

It is then a simple matter to solve this equation using Fourier transforms. Using the notation
f̃ (k) and F [f (θ)](k)) introduced earlier, the Fourier-transformed equation is

(1 − R̃(k))F[ln a](k) = −2π2(2l + 1)

M + 1
δ(k) − 2iR̃(k)ImF[ln(1 + a)](k). (D.50)

We apply (1 − R̃(k))−1 to both sides, then take the inverse Fourier transform to find

ln a(θ) = iπ(2l + 1)

M + 1
F−1[(1 − R̃(k))−1](0) + imLeθ

− 2i
∫ ∞

−∞
dθ ′ϕ(θ − (θ ′ − i0))Im ln(1 + a(θ ′ − i0)), (D.51)



R274 Topical Review

where

ϕ(θ) = F−1[(1 − R̃(k))−1R̃(k)](θ), (D.52)

and mL is a real constant which arises from a zero mode and can be traced to the pole in
(1 − R̃(k))−1 at k = i. It should be fixed by a consideration of the large-θ asymptotic of
ln a(θ). From the definition of R(θ) and the relations

i∂θ ln
sinh σθ + iπτ

sinh σθ − iπτ
= 2σ sin 2πτ

cosh 2σθ − cos 2πτ
(D.53)∫ ∞

−∞

dθ

2π
e−ikθ 2σ sin 2πτ

cosh 2σθ − cos 2πτ
= sinh(1 − 2τ)πk

2σ

sinh πk
2σ

(D.54)

we obtain a compact expression for the kernel ϕ(θ):

ϕ(θ) =
∫

dk

2π
eikθ

sinh πk(M−1)

2M

2 sinh πk
2M

cosh πk
2

. (D.55)

Finally, we rewrite the equation in terms of the integration contours C1 and C2:

ln a(θ) = iπ

(
l +

1

2

)
− imLeθ

+
∫
C1

dθ ′ϕ(θ − θ ′) ln(1 + a(θ ′)) −
∫
C2

dθ ′ϕ(θ − θ ′) ln(1 + a(θ ′)−1). (D.56)

This equation holds for all θ within the strip |Im θ | < min(π, π/M). A little extra care is
required for larger Im θ as the kernel ϕ(θ) has poles at θ = ±iπ and ±iπ/M . If M > 1, the
correct analytic continuation for positive values of Im θ is given by the second determination
[206]

ln a(θ) = −i(1 − e−iπ/M)mLeθ

+
∫
C1

dθ ′ϕII (θ − θ ′) ln(1 + a(θ ′)) −
∫
C2

dθ ′ϕII (θ − θ ′) ln(1 + a(θ ′)−1),(D.57)

where

ϕII (θ) = 2i cos
(

π
2M

)
sinh

(
θ − iπ

2M

)
π
(

cosh
(
2θ − iπ

M

)− cos
(

π
M

)) . (D.58)

This equation is valid for π/M < Im θ < π , when M > 1. A similar continuation can be
performed for M < 1. For a detailed discussion of the effect of this continuation on eigenvalue
asymptotics, see [16].

The NLIE (D.56) first arose in [27] as the continuum limit of an equation describing the
finite size effects of the six-vertex model. It also appears in relativistic integrable scattering
field theory in 1 + 1 dimensions, where it describes the finite size effects of the ultraviolet limit
of the massive sine-Gordon model [205]. In the latter situation the kernel ϕ(θ) is related to
the scalar factor of the sine-Gordon soliton–soliton scattering amplitude. In the field theory
context, the effective central charge is given in terms of ln a(θ) according to

ceff = 3imL

π2

[∫
C1

dθ eθ log(1 + a(θ ′)) −
∫
C2

dθ eθ log(1 + a−1(θ ′))
]

. (D.59)

This integral can be evaluated exactly, with the result

ceff = 1 − 6
(
l + 1

2

)2
M + 1

, (D.60)



Topical Review R275

which, given the relations β2 = 1/(M + 1) and p = (2l + 1)/(4M + 4), agrees perfectly with

ceff = c − 24�p = 1 − 24
p2

β2
. (D.61)

The above NLIE has been derived for the ground state, for which the Bethe roots {Ek}
are all real and positive. However, nonlinear integral equations of both TBA and NLIE types
can be found even when some of the Bethe roots lie in the complex plane. See, for example,
[31, 202, 206–209].

Appendix E. Calculating the spectrum of an ODE

We briefly describe how to calculate the spectrum of[
− d2

dx2
+ x2M +

l(l + 1)

x2
− E

]
ψ(x) = 0. (E.1)

using the nonlinear integral equations derived in appendix D.

E.1. TBA approach

When M is an integer and l(l + 1) = 0 the spectrum encoded in the spectral determinant
D(E, l) can be determined from the fusion relations (5.45) using TBA equations. Recall the
following relation obtained in section 3.7:

i

2
TM/2(E) = i

2
C(M)(v−1E) = D(−E) ≡ D+(−E)D−(−E). (E.2)

From this we see that the real positive zeros of D(E) are precisely the real negative zeros of
TM/2(E) or C(M)(E). We set

t (m)

(
θ + iπ

h + 2

2h

)
≡ Tm(−E), h = 2M. (E.3)

Then from

1 + Y2m

(
θ + i

π

2

)
= t (m)

(
θ + iπ

h + 2

2h

)
t (m)

(
θ + iπ

h − 2

2h

)
, (E.4)

we see that the eigenvalues {Ek} are those zeros of 1+YM(θ) that lie along the line Im θ = π/2.
The constants maL = b0

2 sin πa
h

appearing in the TBA equations (D.18) must be tuned to
match the asymptotic properties of the spectral determinants. The correct result is found by
setting b0 = 2 cos(π/2M)a0, where a0 was defined in (5.20).

A very simple iteration scheme can be used to solve the TBA equations (D.18) numerically.
Starting from

ε(n+1)
a (θ) = αε(n)

a (θ) + (1 − α)

[
maLeθ − 1

2π

h−1∑
b=1

∫ ∞

−∞
φab(θ − θ ′)L(n)

b (θ ′)
dθ ′

2π

]
(E.5)

with ε(0)
a (θ) = maLeθ and 0 < α � 1, (E.5) can be iterated until the desired accuracy

(∼10−14) is reached. Empirically the value α = 0.5 gives a very good rate of convergence
usually in less than one hundred iterations. Once the functions εa(θ) are known numerically
along the real axis, the TBA equations (D.18) provide an integral representation which can be
used to reconstruct the functions εa(θ) and Ya(θ) = exp(εa(θ)) everywhere in the complex
plane. The only point to watch is that the singularities of the kernels φab’s at ±iπ/h and
beyond necessitate the introduction of extra terms when the εa’s are continued beyond the
strip −π/h < Im θ < π/h.
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E.2. NLIE approach

As mentioned above, the single nonlinear integral equation derived in appendix D.2 encodes
the zeros of both the spectral determinants C and D. The zeros of 1 + a(E) on the positive real
axis are the zeros of D(E, l), while those on the negative real axis are the zeros of C(E, l).
Under the variable change E = exp(2Mθ/(M + 1)) the positive real axis of the complex
E-plane becomes the real-θ axis. Therefore the eigenvalues encoded in D(E, l) can be found
by searching along the real axis for the zeros of 1 + a(θ). Similarly the eigenvalues of C(E, l)

can be found as zeros of 1 + a(θ) on the line Im θ = π(M + 1)/2M . Before we can solve the
NLIE (D.56) we must fix the constants mL. The large-E asymptotics of a(E) are

log a(E) ∼


− 1

2 ib0(1 − e−iπ/M)(E)µ 2π
M+1 < arg(E) < 2π − 2π

M+1

− 1
2 ib0(E)µ − 2π

M+1 < arg(E) < 2π
M+1

− 1
2 ib0(1 − eiπ/M)(E)µ −2π + 2π

M+1 < arg(E) < − 2π
M+1 ,

(E.6)

where b0 = 2 cos
(

π
2M

)
a0 as before. Above, by (E)µ we imply eiµ arg(E)|E|µ. Thus the first

and third asymptotics coincide, as indeed they must since a is a single-valued function of E.
Given (5.27), we set mL = 1

2b0v
−µ, though the factor of v−µ is arbitrary and is purely to

match the conventions of [4, 31].
The NLIE can also be solved by iteration and the function a(θ) constructed for all

complex θ using the integral representations (D.56) or (D.57) as appropriate. Consequently
the eigenvalues of the spectral determinants D(E) and C(E) can be calculated for all M > 0
and l. This method is more generally applicable than the TBA approach simply because the
NLIE depends on the parameters M and l in a continuous manner.
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